

Machine Learning

2

References

Text Books:

1. Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill
Education.

Reference Books:

1. Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of
Statistical Learning, 2nd edition, springer series in statistics.

2. Ethem Alpaydın, Introduction to machine learning, second edition, MIT press.

3

Prerequisites

For Machine Learning Course we recommend that students meet the following
prerequisites:

• Basic programming skills (in Python)

• Algorithm design

• Basics of probability & statistics

4

Content

Module – 1

Module – 2

Module – 3

Module – 4

Module – 5

Introduction, Concept Learning, Decision Tree Learning

Artificial Neural Networks-1, Artificial Neural Networks-2,

Evaluating Hypothesis,

Bayesian Learning, Computational learning theory, Instance

Based Learning,

Genetic Algorithms, Learning Sets of Rules, Reinforcement

Learning

Analytical Learning-1, Analytical Learning-2, Combining Inductive and

Analytical Learning

MODULE -1

 6

Machine Learning
Introduction

Ever since computers were invented, we have wondered whether they might be
made to learn. If we could understand how to program them to learn-to improve
automatically with experience-the impact would be dramatic.

• Imagine computers learning from medical records which treatments are most
effective for new diseases

• Houses learning from experience to optimize energy costs based on the particular
usage patterns of their occupants.

• Personal software assistants learning the evolving interests of their users in order
to highlight especially relevant stories from the online morning newspaper

 7

Examples of Successful Applications of
Machine Learning

• Learning to recognize spoken words

• Learning to drive an autonomous vehicle

• Learning to classify new astronomical structures

• Learning to play world-class backgammon

 8

Why is Machine Learning Important?

• Some tasks cannot be defined well, except by examples (e.g., recognizing
people).

• Relationships and correlations can be hidden within large amounts of data.
Machine Learning/Data Mining may be able to find these relationships.

• Human designers often produce machines that do not work as well as desired
in the environments in which they are used.

• The amount of knowledge available about certain tasks might be too large for
explicit encoding by humans (e.g., medical diagnostic).

• Environments change over time.

• New knowledge about tasks is constantly being discovered by humans. It may
be difficult to continuously re-design systems “by hand”.

 9

Areas of Influence for Machine Learning

• Statistics: How best to use samples drawn from unknown probability distributions to

help decide from which distribution some new sample is drawn?

• Brain Models: Non-linear elements with weighted inputs (Artificial Neural

Networks) have been suggested as simple models of biological neurons.

• Adaptive Control Theory: How to deal with controlling a process having unknown

parameters that must be estimated during operation?

• Psychology: How to model human performance on various learning tasks?

• Artificial Intelligence: How to write algorithms to acquire the knowledge humans are

able to acquire, at least, as well as humans?

• Evolutionary Models: How to model certain aspects of biological evolution to

improve the performance of computer programs?

 10

Machine Learning: A Definition

A computer program is said to learn from experience E
with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured
by P, improves with experience E.

 11

Why “Learn”?

Learning is used when:

• Human expertise does not exist (navigating on Mars)

• Humans are unable to explain their expertise (speech recognition)

• Solution changes in time (routing on a computer network)

• Solution needs to be adapted to particular cases (user biometrics)

 12

Well-Posed Learning Problem

Definition: A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P, if its performance at tasks in T,

as measured by P, improves with experience E.

To have a well-defined learning problem, three features needs to be identified:

1. The class of tasks

2. The measure of performance to be improved

3. The source of experience

 13

Checkers Game

 14

Game Basics

• Checkers is played by two players. Each player begins the game with 12 colored

discs. (One set of pieces is black and the other red.) Each player places his or her

pieces on the 12 dark squares closest to him or her. Black moves first. Players

then alternate moves.

• The board consists of 64 squares, alternating between 32 dark and 32 light

squares.

• It is positioned so that each player has a light square on the right side corner

closest to him or her.

• A player wins the game when the opponent cannot make a move. In most cases,

this is because all of the opponent's pieces have been captured, but it could also

be because all of his pieces are blocked in.

 15

Rules of the Game

• Moves are allowed only on the dark squares, so pieces always move diagonally.

Single pieces are always limited to forward moves (toward the opponent).

• A piece making a non-capturing move (not involving a jump) may move only

one square.

• A piece making a capturing move (a jump) leaps over one of the opponent's

pieces, landing in a straight diagonal line on the other side. Only one piece may

be captured in a single jump; however, multiple jumps are allowed during a

single turn.

• When a piece is captured, it is removed from the board.

• If a player is able to make a capture, there is no option; the jump must be made.

• If more than one capture is available, the player is free to choose whichever he or

she prefers.

 16

Rules of the Game Cont.

• When a piece reaches the furthest row from the player who controls that piece, it

is crowned and becomes a king. One of the pieces which had been captured is

placed on top of the king so that it is twice as high as a single piece.

• Kings are limited to moving diagonally but may move both forward and

backward. (Remember that single pieces, i.e. non-kings, are always limited to

forward moves.)

• Kings may combine jumps in several directions, forward and backward, on the

same turn. Single pieces may shift direction diagonally during a multiple capture

turn, but must always jump forward (toward the opponent).

 17

Well-Defined Learning Problem

Acheckers learning problem:

 Task T: playing checkers

 Performance measure P: percent of games won against opponents

 Training experience E: playing practice games against itself

Ahandwriting recognition learning problem:

 Task T: recognizing and classifying handwritten words within images

 Performance measure P: percent of words correctly classified

 Training experience E: a database of handwritten words with given

classifications

 18

Arobot driving learning problem:

 Task T: driving on public four-lane highways using vision sensors

 Performance measure P: average distance travelled before an error (as judged by

human overseer)

 Training experience E: a sequence of images and steering commands recorded

while observing a human driver

19

Designing a Learning System

1. Choosing the Training Experience

2. Choosing the Target Function

3. Choosing a Representation for the Target Function

4. Choosing a Function Approximation Algorithm

1. Estimating training values

2. Adjusting the weights

5. The Final Design

 20

The basic design issues and approaches to machine
learning is illustrated by considering designing a
program to learn to play checkers, with the goal of
entering it in the world checkers tournament

 21

1. Choosing the Training Experience

• The first design choice is to choose the type of training experience from which

the system will learn.

• The type of training experience available can have a significant impact on

success or failure of the learner.

There are three attributes which impact on success or failure of the learner

1. Whether the training experience provides direct or indirect feedback regarding

the choices made by the performance system.

2. The degree to which the learner controls the sequence of training examples

3. How well it represents the distribution of examples over which the final system

performance P must be measured.

 22

1. Whether the training experience provides direct or indirect feedback regarding

the choices made by the performance system.

For example, in checkers game:

• In learning to play checkers, the system might learn from direct training examples consisting of individual

checkers board states and the correct move for each.

• Indirect training examples consisting of the move sequences and final outcomes of various games played.

• The information about the correctness of specific moves early in the game must be inferred indirectly from

the fact that the game was eventually won or lost.

• Here the learner faces an additional problem of credit assignment, or determining the degree to which each

move in the sequence deserves credit or blame for the final outcome.

• Credit assignment can be a particularly difficult problem because the game can be lost even when early

moves are optimal, if these are followed later by poor moves.

• Hence, learning from direct training feedback is typically easier than learning from indirect feedback.

 23

2. A second important attribute of the training experience is the degree to which the

learner controls the sequence of training examples

For example, in checkers game:

• The learner might depends on the teacher to select informative board states and to provide the correct move

for each.

• Alternatively, the learner might itself propose board states that it finds particularly confusing and ask the

teacher for the correct move.

• The learner may have complete control over both the board states and (indirect) training classifications, as it

does when it learns by playing against itself with no teacher present.

• Notice in this last case the learner may choose between experimenting with novel board states that it has not

yet considered, or honing its skill by playing minor variations of lines of play it currently finds most

promising.

 24

3. A third attribute of the training experience is how well it represents the

distribution of examples over which the final system performance P must be

measured.

Learning is most reliable when the training examples follow a distribution similar to that of future test

examples.

For example, in checkers game:

• In checkers learning scenario, the performance metric P is the percent of games the system wins in the world

tournament.

• If its training experience E consists only of games played against itself, there is an danger that this training

experience might not be fully representative of the distribution of situations over which it will later be tested.

For example, the learner might never encounter certain crucial board states that are very likely to be played

by the human checkers champion.

• It is necessary to learn from a distribution of examples that is somewhat different from those on which the

final system will be evaluated. Such situations are problematic because mastery of one distribution of

examples will not necessary lead to strong performance over some other distribution.

 25

2. Choosing the Target Function

The next design choice is to determine exactly what type of knowledge will be

learned and how this will be used by the performance program.

• Lets begin with a checkers-playing program that can generate the legal moves

from any board state.

• The program needs only to learn how to choose the best move from among these

legal moves. This learning task is representative of a large class of tasks for

which the legal moves that define some large search space are known a priori, but

for which the best search strategy is not known.

 26

Given this setting where we must learn to choose among the legal moves, the most

obvious choice for the type of information to be learned is a program, or function,

that chooses the best move for any given board state.

1. Let ChooseMove be the target function and the notation is

ChooseMove : B M

which indicate that this function accepts as input any board from the set of legal

board states B and produces as output some move from the set of legal moves M.

ChooseMove is an choice for the target function in checkers example, but this

function will turn out to be very difficult to learn given the kind of indirect training

experience available to our system

 27

2. An alternative target function is an evaluation function that assigns a numerical

score to any given board state

Let the target function V and the notation

V : B R

which denote that V maps any legal board state from the set B to some real value

We intend for this target function V to assign higher scores to better board states. If

the system can successfully learn such a target function V, then it can easily use it to

select the best move from any current board position.

 28

Let us define the target value V(b) for an arbitrary board state b in B, as follows:

1. if b is a final board state that is won, then V(b) = 100

2. if b is a final board state that is lost, then V(b) = -100

3. if b is a final board state that is drawn, then V(b) = 0

4. if b is a not a final state in the game, then V(b) = V(b'),

where b' is the best final board state that can be achieved starting from b and

playing optimally until the end of the game

 29

3. Choosing a Representation for the
Target Function

let us choose a simple representation - for any given board state, the function c will

be calculated as a linear combination of the following board features:

xl: the number of black pieces on the board

x2: the number of red pieces on the board

x3: the number of black kings on the board

x4: the number of red kings on the board

x5: the number of black pieces threatened by red (i.e., which can be

captured on red's next turn)

x6: the number of red pieces threatened by black

 30

Thus, learning program will represent as a linear function of the form

Where,

• w0 through w6 are numerical coefficients, or weights, to be chosen by the

learning algorithm.

• Learned values for the weights w1 through w6 will determine the relative

importance of the various board features in determining the value of the board

• The weight w0 will provide an additive constant to the board value

 31

Partial design of a checkers learning program:

• Task T: playing checkers

• Performance measure P: percent of games won in the world tournament

• Training experience E: games played against itself

• Target function: V: Board R

• Target function representation

The first three items above correspond to the specification of the learning task,

whereas the final two items constitute design choices for the implementation of the

learning program.

 32

4. Choosing a Function Approximation
Algorithm

• In order to learn the target function f we require a set of training examples, each

describing a specific board state b and the training value Vtrain(b) for b.

• Each training example is an ordered pair of the form (b, Vtrain(b)).

• For instance, the following training example d escribes a board state b in

which black has won the game (note x2 = 0 indicates that red has no remaining

pieces) and for which the target function value Vtrain(b) is therefore +100.

((x1=3, x2=0, x3=1, x4=0, x5=0, x6=0), +100)

 33

Function Approximation Procedure

1. Derive training examples from the indirect training experience available to the

learner

2. Adjusts the weights wi to best fit these training examples

1. Estimating training values

 34

A simple approach for estimating training values for intermediate board states is to

assign the training value of Vtrain(b) for any intermediate board state b to be

V(̂ Successor(b))

Where ,

V̂ is the learner's current approximation to V

Successor(b) denotes the next board state following b for which it is again the

program's turn to move

Rule for estimating training values

Vtrain(b) ← V̂ (Successor(b))

2. Adjusting the weights

Specify the learning algorithm for choosing the weights wi to best fit the set of

training examples {(b, Vtrain(b))}

A first step is to define what we mean by the bestfit to the training data.

• One common approach is to define the best hypothesis, or set of weights, as that

which minimizes the squared error E between the training values and the values

predicted by the hypothesis.

• Several algorithms are known for finding weights of a linear function that

minimize E.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 36

In our case, we require an algorithm that will incrementally refine the weights as

new training examples become available and that will be robust to errors in these

estimated training values

One such algorithm is called the least mean squares, or LMS training rule. For

each observed training example it adjusts the weights a small amount in the

direction that reduces the error on this training example

LMS weight update rule :- For each training example (b, Vtrain(b))

Use the current weights to calculate V̂ (b)
For each weight wi, update it as

wi ← wi + ƞ (Vtrain (b) - V ̂(b)) xi

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 37

Here ƞ is a small constant (e.g., 0.1) that moderates the size of the weight update.

Working of weight update rule

• When the error (Vtrain(b)- V̂(b)) is zero, no weights are changed.

• When (Vtrain(b) - V̂(b)) is positive (i.e., when V ̂(b) is too low), then each weight

is increased in proportion to the value of its corresponding feature. This will

raise the value of V ̂(b), reducing the error.

• If the value of some feature xi is zero, then its weight is not altered regardless of

the error, so that the only weights updated are those whose features actually

occur on the training example board.

5. The Final Design

The final design of checkers learning system can be described by four distinct

program modules that represent the central components in many learning systems

38 Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 39

1. The Performance System is the module that must solve the given performance

task by using the learned target function(s).

It takes an instance of a new problem (new game) as input and produces a trace of

its solution (game history) as output.

In checkers game, the strategy used by the Performance System to select its next

move at each step is determined by the learned V̂ evaluation function. Therefore, we

expect its performance to improve as this evaluation function becomes increasingly

accurate.

2. The Critic takes as input the history or trace of the game and produces as output

a set of training examples of the target function. As shown in the diagram, each

training example in this case corresponds to some game state in the trace, along

with an estimate Vtrain of the target function value for this example.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 40

3. The Generalizer takes as input the training examples and produces an output

hypothesis that is its estimate of the target function.

It generalizes from the specific training examples, hypothesizing a general function

that covers these examples and other cases beyond the training examples.

In our example, the Generalizer corresponds to the LMS algorithm, and the output

hypothesis is the function V̂ described by the learned weights w0, . . . , W6.

4. The Experiment Generator takes as input the current hypothesis and outputs a

new problem (i.e., initial board state) for the Performance System to explore. Its

role is to pick new practice problems that will maximize the learning rate of the

overall system.

In our example, the Experiment Generator always proposes the same initial game

board to begin a new game.

The sequence of design choices made for the checkers program is summarized in

below figure

41 Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College

Perspectives of Machine Learning

Perspective of machine learning involves searching very

large space of possible hypothesis to determine one that best fits

the observed data and any prior knowledge held by learner.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 43

Issues in Machine Learning

• What algorithms exist for learning general target functions from specific training

examples? In what settings will particular algorithms converge to the desired

function, given sufficient training data? Which algorithms perform best for

which types of problems and representations?

• How much training data is sufficient? What general bounds can be found to

relate the confidence in learned hypotheses to the amount of training experience

and the character of the learner's hypothesis space?

• When and how can prior knowledge held by the learner guide the process of

generalizing from examples? Can prior knowledge be helpful even when it is

only approximately correct?

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 44

• What is the best strategy for choosing a useful next training experience, and how

does the choice of this strategy alter the complexity of the learning problem?

• What is the best way to reduce the learning task to one or more function

approximation problems? Put another way, what specific functions should the

system attempt to learn? Can this process itself be automated?

• How can the learner automatically alter its representation to improve its ability to

represent and learn the target function?

45

Concept Learning

• Learning involves acquiring general concepts from specific training examples.
Example: People continually learn general concepts or categories such as "bird,"
"car," "situations in which I should study more in order to pass the exam," etc.

• Each such concept can be viewed as describing some subset of objects or events
defined over a larger set

• Alternatively, each concept can be thought of as a Boolean-valued function
defined over this larger set. (Example: A function defined over all animals, whose
value is true for birds and false for other animals).

Concept learning - Inferring a Boolean-valued function from training examples of
its input and output

A Concept Learning Task

Consider the example task of learning the target concept

"Days on which my friend Aldo enjoys his favorite water sport."

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

Table- Describes a set ofDeeexpaak Dm, Apsstl. eProdf., aDeypts. o,f CeSEa, cCahnarareEnpggr. Ceoslleegented by a set of attributes 47

47

The attribute EnjoySport indicates whether or not a Person enjoys his favorite

water sport on this day.

The task is to learn to predict the value of EnjoySport

for an arbitrary day, based on the values of its other

attributes ?

48

What hypothesis representation is provided to the learner?

Let’s consider a simple representation in which each hypothesis consists of a

conjunction of constraints on the instance attributes.

Let each hypothesis be a vector of six constraints, specifying the values of the six

attributes Sky, AirTemp, Humidity, Wind, Water, and Forecast.

For each attribute, the hypothesis will either

• Indicate by a "?' that any value is acceptable for this attribute,
• Specify a single required value (e.g., Warm) for the attribute, or

• Indicate by a "Φ" that no value is acceptable

49

If some instance x satisfies all the constraints of hypothesis h, then h classifies

x as a positive example (h(x) = 1).

The hypothesis that PERSON enjoys his favorite sport only on cold days with high

humidity (independent of the values of the other attributes) is represented by the

expression

(?, Cold, High, ?, ?, ?)

The most general hypothesis-that every day is a positive example-is represented by

(?, ?, ?, ?, ?, ?)

The most specific possible hypothesis-that no

represented by

day is a positive example-is

(Φ , Φ, Φ, Φ, Φ, Φ)

50

Notation

The set of items over which the concept is defined is called the set of instances,

which we denote by X.

Example: X is the set of all possible days, each represented by the attributes: Sky,

AirTemp, Humidity, Wind, Water, and Forecast

The concept or function to be learned is called the target concept, which we denote

by c.

c can be any Boolean valued function defined over the instances X

c : X {O, 1}

Example: The target concept corresponds to the value of the attribute EnjoySport

(i.e., c(x) = 1 if EnjoySport = Yes, and c(x) = 0 if EnjoySport = No).

51

• Instances for which c(x) = 1 are called positive examples, or members of the

target concept.

• Instances for which c(x) = 0 are called negative examples, or non-members of

the target concept.

• The ordered pair (x, c(x)) to describe the training example consisting of the

instance x and its target concept value c(x).

• D to denote the set of available training examples

• The symbol H to denote the set of all possible hypotheses that the learner may

consider regarding the identity of the target concept. Each hypothesis h in H

represents a Boolean-valued function defined over X

h : X {O, 1}

• The goal of the learner is to find a hypothesis h such that h(x) = c(x) for all x in

X.

52

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

53

54

The Inductive Learning Hypothesis

Any hypothesis found to approximate the target function well over a sufficiently

large set of training examples will also approximate the target function well over

other unobserved examples.

Concept learning as Search

• Concept learning can be viewed as the task of searching through a large space of

hypotheses implicitly defined by the hypothesis representation.

• The goal of this search is to find the hypothesis that best fits the training

examples.

Example, the instances X and hypotheses H in the EnjoySport learning task.

The attribute Sky has three possible values, and AirTemp, Humidity, Wind, Water

Forecast each have two possible values, the instance space X contains exactly

• 3.2.2.2.2.2 = 96 Distinct instances

• 5.4.4.4.4.4 = 5120 Syntactically distinct hypotheses within H.

Every hypothesis containing one or more " Φ" symbols represents the empty set of

instances; that is, it classifies every instance as negative.

• 1 + (4.3.3.3.3.3) = 973. SeDemepaaknD,tAiscsta. Plrolfy.,Dedpti.softCiSnE,cCatnahrayEnpggo.Ctohlleegeses 56

General-to-Specific Ordering of Hypotheses

56

• Consider the two hypotheses

h1 = (Sunny, ?, ?, Strong, ?, ?)

h2 = (Sunny, ?, ?, ?, ?, ?)

• Consider the sets of instances that are classified positive by hl and by h2.

• h2 imposes fewer constraints on the instance, it classifies more instances as

positive. So, any instance classified positive by hl will also be classified positive

by h2. Therefore, h2 is more general than hl.

General-to-Specific Ordering of Hypotheses

57

• Given hypotheses hj and hk, hj is more-general-than or- equal do hk if and only if

any instance that satisfies hk also satisfies hi

Definition: Let hj and hk be Boolean-valued functions defined over X. Then hj is

more general-than-or-equal-to hk (written hj ≥ hk) if and only if

58

• In the figure, the box on the left

represents the set X of all

instances, the box on the right the

set H of all hypotheses.

• Each hypothesis corresponds to

some subset of X-the subset of

instances that it classifies positive.

• The arrows connecting hypotheses

represent the more - general -than

relation, with the arrow pointing

toward the less general hypothesis.

• Note the subset of instances

characterized by h2 subsumes the

subset characterized by h l , hence

h2 is more - general– than h1

59

FIND-S: Finding a Maximally Specific
Hypothesis

FIND-S Algorithm

1. Initialize h to the most specific hypothesis in H

2. For each positive training instance x

For each attribute constraint ai in h

If the constraint ai is satisfied by x

Then do nothing

Else replace ai in h by the next more general constraint that is satisfied by x

3. Output hypothesis h

60

To illustrate this algorithm, assume the learner is given the sequence of training
examples from the EnjoySport task

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

The first step of FIND-S is to initialize h to the most specific hypothesis in H

h - (Ø, Ø, Ø, Ø, Ø, Ø)

61

x1 = <Sunny Warm Normal Strong Warm Same>, +

Observing the first training example, it is clear that our hypothesis is too specific. In
particular, none of the "Ø" constraints in h are satisfied by this example, so each is
replaced by the next more general constraint that fits the example

h1 = <Sunny Warm Normal Strong Warm Same>

This h is still very specific; it asserts that all instances are negative except for the
single positive training example

x2 = <Sunny, Warm, High, Strong, Warm, Same>, +

The second training example forces the algorithm to further generalize h, this time
substituting a "?' in place of any attribute value in h that is not satisfied by the new
example

h2 = <Sunny Warm ? Strong Warm Same>

62

x3 = <Rainy, Cold, High, Strong, Warm, Change>, -

Upon encountering the third training the algorithm makes no change to h. The
FIND-S algorithm simply ignores every negative example.

h3 = < Sunny Warm ? Strong Warm Same>

x4 = <Sunny Warm High Strong Cool Change>, +

The fourth example leads to a further generalization of h

h4 = < Sunny Warm ? Strong ? ? >

63

64

The key property of the FIND-S algorithm is

• FIND-S is guaranteed to output the most specific hypothesis within H that is
consistent with the positive training examples

• FIND-S algorithm’s final hypothesis will also be consistent with the negative
examples provided the correct target concept is contained in H, and provided the
training examples are correct.

65

Unanswered by FIND- S

1. Has the learner converged to the correct target concept?

2. Why prefer the most specific hypothesis?

3. Are the training examples consistent?

4. What if there are several maximally specific consistent hypotheses?

66

Version Space and CANDIDATE
ELIMINATION Algorithm

The key idea in the CANDIDATE-ELIMINATION algorithm is to output a description of
the set of all hypotheses consistent with the training examples

Representation

• Definition: A hypothesis h is consistent with a set of training examples D if and only if
h(x) = c(x) for each example (x, c(x)) in D.

Consistent(h, D) (x, c(x) D) h(x) = c(x))

Note difference between definitions of consistent and satisfies

• an example x is said to satisfy hypothesis h when h(x) = 1, regardless of whether x is a positive or
negative example of the target concept.

• an example x is said to consistent with hypothesis h iff h(x) = c(x)

67

Version Space

A representation of the set of all hypotheses which are consistent with D

Definition: The version space, denoted VSH,D with respect to hypothesis space H
and training examples D, is the subset of hypotheses from H consistent with the
training examples in D

VSH,D {h H | Consistent(h, D)}

68

The LIST-THEN-ELIMINATE Algorithm

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 69

The LIST-THEN-ELIMINATE algorithm first initializes the version space to contain
all hypotheses in H and then eliminates any hypothesis found inconsistent with any
training example.

The LIST-THEN-ELIMINATE Algorithm

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 70

1. VersionSpace c a list containing every hypothesis in H

2. For each training example, (x, c(x))

remove from VersionSpace any hypothesis h for which h(x) ≠ c(x)

3. Output the list of hypotheses in VersionSpace

The LIST-THEN-ELIMINATE Algorithm

• List-Then-Eliminate works in principle, so long as version space is finite.

• However, since it requires exhaustive enumeration of all hypotheses in practice it is
not feasible.

A More Compact Representation for Version Spaces

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 71

• The version space is represented by its most general and least general members.

• These members form general and specific boundary sets that delimit the version
space within the partially ordered hypothesis space.

72

• A version space with its

general and specific boundary

sets.

• The version space includes all

six hypotheses shown here, but

can be represented more

simply by S and G.

• Arrows indicate instance of the

more-general-than relation.

This is the version space for

the Enjoysport concept

learning

• problem and training
examples described in below

table Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High
Deepak

Strong
D, Asst. Prof

Cool
., Dept. of C

Change
SE, Canara Engg.

Yes
College

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 73

Definition: The general boundary G, with respect to hypothesis space H and
training data D, is the set of maximally general members of H consistent with D

G {g H | Consistent(g, D)(g' H)[(g' g g) Consistent(g', D)]}

Definition: The specific boundary S, with respect to hypothesis space H and
training data D, is the set of minimally general (i.e., maximally specific) members of
H consistent with D.

S {s H | Consistent(s, D)(s' H)[(s gs') Consistent(s', D)]}

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 74

Version Space representation theorem

Theorem: Let X be an arbitrary set of instances and Let H be a set of Boolean-

valued hypotheses defined over X. Let c : X →{O, 1} be an arbitrary target concept

defined over X, and let D be an arbitrary set of training examples {(x, c(x))). For all

X, H, c, and D such that S and G are well defined,

VSH,D={h H |(s S) (g G) (g g h g s)}

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 75

To Prove:

VSH,D={h H |(s S) (g G) (g g h g s)}

1. Every h satisfying the right hand side of the above expression is in VS H,D

2. Every member of VS H,D satisfies the right-hand side of the expression

Sketch of proof:

1. let g, h, s be arbitrary members of G, H, S respectively with g g h g s

By the definition of S, s must be satisfied by all positive examples in D. Because h g s , h must also

be satisfied by all positive examples in D.

By the definition of G, g cannot be satisfied by any negative example in D, and because g g h h
cannot be satisfied by any negative example in D. Because h is satisfied by all positive examples in D
and by no negative examples in D, h is consistent with D, and therefore h is a member of VSH,D

2. It can be proven by assuming some h in VSH,D,that does not satisfy the right-hand side of the
expression, then showing that this leads to an inconsistency

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 76

The CANDIDATE-ELIMINATION Learning Algorithm

The CANDIDATE-ELIMINTION algorithm computes the version space containing
all hypotheses from H that are consistent with an observed sequence of training
examples.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 77

Initialize G to the set of maximally general hypotheses in H

Initialize S to the set of maximally specific hypotheses in H

For each training example d, do

• If d is a positive example

• Remove from G any hypothesis inconsistent with d

• For each hypothesis s in S that is not consistent with d

• Remove s from S

• Add to S all minimal generalizations h of s such that

• h is consistent with d, and some member of G is more general than h

• Remove from S any hypothesis that is more general than another hypothesis in S

• If d is a negative example

• Remove from S any hypothesis inconsistent with d

• For each hypothesis g in G that is not consistent with d

• Remove g from G

• Add to G all minimal specializations h of g such that

• h is consistent with d, and some member of S is more specific than h

• Remove from G any hypothesis that is less general than another hypothesis in G

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 78

An Illustrative Example

The boundary sets are first initialized to Go and So, the most general and most
specific hypotheses in H.

S0

G0 ?, ?, ?, ?, ?, ?

, , , , ,

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 79

?, ?, ?, ?, ?, ?

For training example d,

Sunny, Warm, Normal, Strong, Warm, Same +

S0

S1

G0, G1

, , , , .

Sunny, Warm, Normal, Strong, Warm, Same

For training example d,

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 80

?, ?, ?, ?, ?, ?

Sunny, Warm, High, Strong, Warm, Same +

S1

S2

G1, G2

Sunny, Warm, Normal, Strong, Warm, Same

Sunny, Warm, ?, Strong, Warm, Same

For training example d,

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 81

Rainy, Cold, High, Strong, Warm, Change

S2, S3

G3

G2 ?, ?, ?, ?, ?, ?

Sunny, ?, ?, ?, ?, ? ?, Warm, ?, ?, ?, ? ?, ?, ?, ?, ?, Same

Sunny, Warm, ?, Strong, Warm, Same

For training example d,

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 82

Sunny, Warm, High, Strong, Cool Change +

S3

S4

G4

G3 Sunny, ?, ?, ?, ?, ? ?, Warm, ?, ?, ?, ? ?, ?, ?, ?, ?, Same

Sunny, Warm, ?, Strong, Warm, Same

Sunny, ?, ?, ?, ?, ? ?, Warm, ?, ?, ?, ?

Sunny, Warm, ?, Strong, ?, ?

The final version space for the EnjoySport concept learning problem and training

examples described earlier.
Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 84

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 84

Inductive Bias

The fundamental questions for inductive inference

• What if the target concept is not contained in the hypothesis space?

• Can we avoid this difficulty by using a hypothesis space that includes every possible

hypothesis?

• How does the size of this hypothesis space influence the ability of the algorithm to

generalize to unobserved instances?

• How does the size of the hypothesis space influence the number of training examples

that must be observed?

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 85

Effect of incomplete hypothesis space

Preceding algorithms work if target function is in H

Will generally not work if target function not in H

Consider following examples which represent target function
“sky = sunny or sky = cloudy”:

Sunny Warm Normal Strong Cool Change Y
Cloudy Warm Normal Strong Cool Change Y

Rainy Warm Normal Strong Cool Change N

If apply Candidate Elimination algorithm as before, end up with empty Version Space

After first two training example

S= ? Warm Normal Strong Cool Change

New hypothesis is overly general and it covers the third negative training example!

Our H does not include the appropriate c

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 86

Incomplete hypothesis space

An Unbiased Learner

• If c not in H, then consider generalizing representation of H to contain c

• The size of the instance space X of days described by the six available attributes is 96.
The number of distinct subsets that can be defined over a set X containing |X| elements
(i.e., the size of the power set of X) is 2|X|

• Recall that there are 96 instances in EnjoySport; hence there are 296 possible hypotheses
in full space H

• Can do this by using full propositional calculus with AND, OR, NOT

• Hence H defined only by conjunctions of attributes is biased (containing only 973 h’s)

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 87

• Let us reformulate the Enjoysport learning task in an unbiased way by defining a new
hypothesis space H' that can represent every subset of instances; that is, let H' correspond
to the power set of X.

• One way to define such an H' is to allow arbitrary disjunctions, conjunctions, and
negations of our earlier hypotheses.

For instance, the target concept "Sky = Sunny or Sky = Cloudy" could then be described as

(Sunny, ?, ?, ?, ?, ?) V (Cloudy, ?, ?, ?, ?, ?)

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 88

Definition:

Consider a concept learning algorithm L for the set of instances X.

• Let c be an arbitrary concept defined over X

• Let Dc = {(x , c(x))} be an arbitrary set of training examples of c.

• Let L(xi, Dc) denote the classification assigned to the instance xi by L after training on the
data Dc.

• The inductive bias of L is any minimal set of assertions B such that for any target concept
c and corresponding training examples Dc

(xi X) [(B Dc xi) ├ L(xi, Dc)]

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 89

Modelling inductive systems by

equivalent deductive systems.

The input-output behavior of the

CANDIDATE-ELIMINATION

algorithm using a hypothesis space H

is identical to that of a deductive

theorem prover utilizing the assertion

"H contains the target concept." This

assertion is therefore called the

inductive bias of the CANDIDATE-

ELIMINATION algorithm.

characterizing inductive systems

by their inductive bias allows

modelling them by their equivalent

deductive systems. This provides a

way to compare inductive systems

according to their policies for

generalizing beyond the observed

training data.

DECISION TREE LEARNING

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 2

Decision tree learning is a method for approximating
discrete-valued target functions, in which the learned
function is represented by a decision tree.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 3

DECISION TREE REPRESENTATION

FIGURE: A

decision tree for the

concept PlayTennis.

An example is

classified by sorting

it through the tree to

the appropriate leaf

node, then returning

the classification

associated with this

leaf

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 4

• Decision trees classify instances by sorting them down the tree from the root to

some leaf node, which provides the classification of the instance.

• Each node in the tree specifies a test of some attribute of the instance, and each

branch descending from that node corresponds to one of the possible values for

this attribute.

• An instance is classified by starting at the root node of the tree, testing the

attribute specified by this node, then moving down the tree branch corresponding

to the value of the attribute in the given example. This process is then repeated

for the subtree rooted at the new node.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 5

• Decision trees represent a disjunction of conjunctions of constraints on the

attribute values of instances.

• Each path from the tree root to a leaf corresponds to a conjunction of attribute

tests, and the tree itself to a disjunction of these conjunctions

For example,

The decision tree shown in above figure corresponds to the expression

(Outlook = Sunny 𝖠 Humidity = Normal)

(Outlook = Overcast)

(Outlook = Rain 𝖠 Wind = Weak)

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 6

APPROPRIATE PROBLEMS FOR
DECISION TREE LEARNING

Decision tree learning is generally best suited to problems with the following
characteristics:

1. Instances are represented by attribute-value pairs – Instances are described by
a fixed set of attributes and their values

2. The target function has discrete output values – The decision tree assigns a
Boolean classification (e.g., yes or no) to each example. Decision tree methods
easily extend to learning functions with more than two possible output values.

3. Disjunctive descriptions may be required

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 7

4. The training data may contain errors – Decision tree learning methods are

robust to errors, both errors in classifications of the training examples and errors

in the attribute values that describe these examples.

5. The training data may contain missing attribute values – Decision tree

methods can be used even when some training examples have unknown values

• Decision tree learning has been applied to problems such as learning to classify

medical patients by their disease, equipment malfunctions by their cause, and

loan applicants by their likelihood of defaulting on payments.

• Such problems, in which the task is to classify examples into one of a discrete set

of possible categories, are often referred to as classification problems.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 8

T H E BASIC DECISION TREE LEARNING
ALGORITHM

• Most algorithms that have been developed for learning decision trees are

variations on a core algorithm that employs a top-down, greedy search through the
space of possible decision trees. This approach is exemplified by the ID3
algorithm and its successor C4.5

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 9

What is the ID3 algorithm?

• ID3 stands for Iterative Dichotomiser 3

• ID3 is a precursor to the C4.5 Algorithm.

• The ID3 algorithm was invented by Ross Quinlan in 1975

• Used to generate a decision tree from a given data set by employing a top-down,

greedy search, to test each attribute at every node of the tree.

• The resulting tree is used to classify future samples.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 10

ID3 algorithm

ID3(Examples, Target_attribute, Attributes)

Examples are the training examples. Target_attribute is the attribute whose value is to be predicted

by the tree. Attributes is a list of other attributes that may be tested by the learned decision tree.

Returns a decision tree that correctly classifies the given Examples.

 Create a Root node for the tree

 If all Examples are positive, Return the single-node tree Root, with label = +

 If all Examples are negative, Return the single-node tree Root, with label = -

 If Attributes is empty, Return the single-node tree Root, with label = most common value of

Target_attribute in Examples

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 11

 Otherwise Begin

 A ← the attribute from Attributes that best* classifies Examples

 The decision attribute for Root ← A

 For each possible value, vi, of A,

 Add a new tree branch below Root, corresponding to the test A = vi

 Let Examples vi, be the subset of Examples that have value vi for A

 If Examples vi , is empty

 Then below this new branch add a leaf node with label = most common value of

Target_attribute in Examples

 Else below this new branch add the subtree

ID3(Examples vi, Targe_tattribute, Attributes – {A}))

 End

 Return Root

* The best attribute is the one with highest information gain

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 12

Which Attribute Is the Best Classifier?

• The central choice in the ID3 algorithm is selecting which attribute to test at each
node in the tree.

• A statistical property called information gain that measures how well a given
attribute separates the training examples according to their target classification.

• ID3 uses information gain measure to select among the candidate attributes at
each step while growing the tree.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 13

ENTROPY MEASURES HOMOGENEITY OF EXAMPLES

• To define information gain, we begin by defining a measure called entropy.

Entropy measures the impurity of a collection of examples.

• Given a collection S, containing positive and negative examples of some target
concept, the entropy of S relative to this Boolean classification is

Where,
p+ is the proportion of positive examples in S

p- is the proportion of negative examples in S.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 14

Example: Entropy

• Suppose S is a collection of 14 examples of some boolean concept, including 9
positive and 5 negative examples. Then the entropy of S relative to this boolean
classification is

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 15

• The entropy is 0 if all members of S belong to the same class

• The entropy is 1 when the collection contains an equal number of positive and
negative examples

• If the collection contains unequal numbers of positive and negative examples, the
entropy is between 0 and 1

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 16

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 17

INFORMATION GAIN MEASURES THE EXPECTED
REDUCTION IN ENTROPY

• Information gain, is the expected reduction in entropy caused by partitioning the

examples according to this attribute.

• The information gain, Gain(S, A) of an attribute A, relative to a collection of
examples S, is defined as

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 18

Example: Information gain

Let, Values(Wind) = {Weak, Strong}

S

SWeak

SStrong

= [9+, 5−]

= [6+, 2−]

= [3+, 3−]

Information gain of attribute Wind:

Gain(S, Wind) = Entropy(S) − 8/14 Entropy (SWeak) − 6/14 Entropy (SStrong)

= 0.94 – (8/14)* 0.811 – (6/14) *1.00

= 0.048

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 19

An Illustrative Example

• To illustrate the operation of ID3, consider the learning task represented by the

training examples of below table.

• Here the target attribute PlayTennis, which can have values yes or no for

different days.

• Consider the first step through the algorithm, in which the topmost node of the

decision tree is created.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 20

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 21

ID3 determines the information gain for each candidate attribute (i.e., Outlook,

Temperature, Humidity, and Wind), then selects the one with highest information

gain

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 22

The information gain values for all four attributes are

• Gain(S, Outlook)

• Gain(S, Humidity)

• Gain(S, Wind)

= 0.246

= 0.151

= 0.048

• Gain(S, Temperature) = 0.029

• According to the information gain measure, the Outlook attribute provides the

best prediction of the target attribute, PlayTennis, over the training examples.

Therefore, Outlook is selected as the decision attribute for the root node, and

branches are created below the root for each of its possible values i.e., Sunny,

Overcast, and Rain.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 23

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 24

SRain = { D4, D5, D6, D10, D14}

Gain (SRain , Humidity) = 0.970 – (2/5)1.0 – (3/5)0.917 = 0.019

Gain (SRain , Temperature) =0.970 – (0/5)0.0 – (3/5)0.918 – (2/5)1.0 = 0.019

Gain (SRain , Wind) =0.970 – (3/5)0.0 – (2/5)0.0 = 0.970

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 25

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 26

HYPOTHESIS SPACE SEARCH IN DECISION TREE
LEARNING

• ID3 can be characterized as searching a space of hypotheses for one that fits the

training examples.

• The hypothesis space searched by ID3 is the set of possible decision trees.

• ID3 performs a simple-to complex, hill-climbing search through this hypothesis
space, beginning with the empty tree, then considering progressively more
elaborate hypotheses in search of a decision tree that correctly classifies the
training data

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 27

Figure:

• Hypothesis space search by ID3.

• ID3 searches through the space of

possible decision trees from simplest to

increasingly complex, guided by the

information gain heuristic

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 28

By viewing ID3 in terms of its search space and search strategy, we can get some
insight into its capabilities and limitations

1. ID3's hypothesis space of all decision trees is a complete space of finite discrete-
valued functions, relative to the available attributes. Because every finite discrete-
valued function can be represented by some decision tree

• ID3 avoids one of the major risks of methods that search incomplete hypothesis

spaces : that the hypothesis space might not contain the target function.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 29

2. ID3 maintains only a single current hypothesis as it searches through the space
of decision trees.

For example, with the earlier version space candidate elimination method, which
maintains the set of all hypotheses consistent with the available training
examples.

By determining only a single hypothesis, ID3 loses the capabilities that follow from
explicitly representing all consistent hypotheses.

For example, it does not have the ability to determine how many alternative
decision trees are consistent with the available training data, or to pose new
instance queries that optimally resolve among these competing hypotheses

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 30

3. ID3 in its pure form performs no backtracking in its search. Once it selects an
attribute to test at a particular level in the tree, it never backtracks to reconsider this
choice.

• In the case of ID3, a locally optimal solution corresponds to the decision tree it
selects along the single search path it explores. However, this locally optimal
solution may be less desirable than trees that would have been encountered along a
different branch of the search.

4. ID3 uses all training examples at each step in the search to make statistically
based decisions regarding how to refine its current hypothesis.

• One advantage of using statistical properties of all the examples is that the
resulting search is much less sensitive to errors in individual training examples.

• ID3 can be easily extended to handle noisy training data by modifying its
termination criterion to accept hypotheses that imperfectly fit the training data.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 31

INDUCTIVE BIAS IN DECISION TREE LEARNING

Inductive bias is the set of assumptions that, together with the training data,
deductively justify the classifications assigned by the learner to future instances

Given a collection of training examples, there are typically many decision trees
consistent with these examples. Which of these decision trees does ID3 choose?

ID3 search strategy

(a) selects in favour of shorter trees over longer ones

(b) selects trees that place the attributes with highest information gain closest to the
root.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 32

Approximate inductive bias of ID3: Shorter trees are preferred over larger trees

• Consider an algorithm that begins with the empty tree and searches breadth first

through progressively more complex trees.

• First considering all trees of depth 1, then all trees of depth 2, etc.

• Once it finds a decision tree consistent with the training data, it returns the
smallest consistent tree at that search depth (e.g., the tree with the fewest nodes).

• Let us call this breadth-first search algorithm BFS-ID3.

• BFS-ID3 finds a shortest decision tree and thus exhibits the bias "shorter trees are
preferred over longer trees.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 33

A closer approximation to the inductive bias of ID3: Shorter trees are preferred
over longer trees. Trees that place high information gain attributes close to the root
are preferred over those that do not.

• ID3 can be viewed as an efficient approximation to BFS-ID3, using a greedy
heuristic search to attempt to find the shortest tree without conducting the entire
breadth-first search through the hypothesis space.

• Because ID3 uses the information gain heuristic and a hill climbing strategy, it
exhibits a more complex bias than BFS-ID3.

• In particular, it does not always find the shortest consistent tree, and it is biased to
favour trees that place attributes with high information gain closest to the root.

Restriction Biases and Preference Biases

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 34

Difference between the types of inductive bias exhibited by ID3 and by the CANDIDATE-

ELIMINATION Algorithm.

ID3

• ID3 searches a complete hypothesis space

• It searches incompletely through this space, from simple to complex hypotheses, until its

termination condition is met

• Its inductive bias is solely a consequence of the ordering of hypotheses by its search strategy. Its
hypothesis space introduces no additional bias

CANDIDATE-ELIMINATION Algorithm

• The version space CANDIDATE-ELIMINATION Algorithm searches an incomplete hypothesis
space

• It searches this space completely, finding every hypothesis consistent with the training data.

• Its inductive bias is solely a consequence of the expressive power of its hypothesis
representation. Its search strategy introduces no additional bias

Restriction Biases and Preference Biases

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 35

• The inductive bias of ID3 is a preference for certain hypotheses over others (e.g.,
preference for shorter hypotheses over larger hypotheses), with no hard restriction
on the hypotheses that can be eventually enumerated. This form of bias is called a
preference bias or a search bias.

• The bias of the CANDIDATE ELIMINATION algorithm is in the form of a
categorical restriction on the set of hypotheses considered. This form of bias is
typically called a restriction bias or a language bias.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 36

Which type of inductive bias is preferred in order to generalize beyond the training
data, a preference bias or restriction bias?

• A preference bias is more desirable than a restriction bias, because it allows the
learner to work within a complete hypothesis space that is assured to contain the
unknown target function.

• In contrast, a restriction bias that strictly limits the set of potential hypotheses is
generally less desirable, because it introduces the possibility of excluding the
unknown target function altogether.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 37

Occam's razor

Occam's razor: is the problem-solving principle that the simplest solution tends to be
the right one. When presented with competing hypotheses to solve a problem, one
should select the solution with the fewest assumptions.

Occam's razor: “Prefer the simplest hypothesis that fits the data”.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 38

Why Prefer Short Hypotheses ?

Argument in favour:

Fewer short hypotheses than long ones:

• Short hypotheses fits the training data which are less likely to be coincident

• Longer hypotheses fits the training data might be coincident.

Many complex hypotheses that fit the current training data but fail to generalize
correctly to subsequent data.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 39

Argument opposed:

• There are few small trees, and our priori chance of finding one consistent with an
arbitrary set of data is therefore small. The difficulty here is that there are very
many small sets of hypotheses that one can define but understood by fewer
learner.

• The size of a hypothesis is determined by the representation used internally by the
learner. Occam's razor will produce two different hypotheses from the same
training examples when it is applied by two learners, both justifying their
contradictory conclusions by Occam's razor. On this basis we might be tempted to
reject Occam's razor altogether.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 40

ISSUES IN DECISION TREE LEARNING

1. Avoiding Overfitting the Data

Reduced error pruning Rule

post-pruning

2. Incorporating Continuous-Valued Attributes

3. Alternative Measures for Selecting Attributes

4. Handling Training Examples with Missing Attribute Values

5. Handling Attributes with Differing Costs

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 41

1. Avoiding Overfitting the Data

• The ID3 algorithm grows each branch of the tree just deeply enough to perfectly

classify the training examples but it can lead to difficulties when there is noise in
the data, or when the number of training examples is too small to produce a
representative sample of the true target function. This algorithm can produce trees
that overfit the training examples.

• Definition - Overfit: Given a hypothesis space H, a hypothesis h ∈ H is said to
overfit the training data if there exists some alternative hypothesis h' ∈ H, such
that h has smaller error than h' over the training examples, but h' has a smaller
error than h over the entire distribution of instances.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 42

• The below figure illustrates the impact of overfitting in a typical application of decision tree
learning.

• The horizontal axis of this plot indicates the total number of nodes in the decision tree, as the tree is being
constructed. The vertical axis indicates the accuracy of predictions made by the tree.

• The solid line shows the accuracy of the decision tree over the training examples. The broken line shows
accuracy measured over an independent set of test example

• The accuracy of the tree over the training examples increases monotonically as the tree is grown. The
accuracy measured over the independent test examples first increases, then decreases.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 43

How can it be possible for tree h to fit the training examples better than h', but for it to perform

more poorly over subsequent examples?

1. Overfitting can occur when the training examples contain random errors or noise

2. When small numbers of examples are associated with leaf nodes.

Noisy Training Example

Example 15: <Sunny, Hot, Normal, Strong, ->

• Example is noisy because the correct label is +

• Previously constructed tree misclassifies it

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 44

Approaches to avoiding overfitting in decision tree learning

• Pre-pruning (avoidance): Stop growing the tree earlier, before it reaches the point where
it perfectly classifies the training data

• Post-pruning (recovery): Allow the tree to overfit the data, and then post-prune the tree

Criterion used to determine the correct final tree size

• Use a separate set of examples, distinct from the training examples, to evaluate the utility of
post-pruning nodes from the tree

• Use all the available data for training, but apply a statistical test to estimate whether
expanding (or pruning) a particular node is likely to produce an improvement beyond the
training set

• Use measure of the complexity for encoding the training examples and the decision tree,
halting growth of the tree when this encoding size is minimized. This approach is called the
Minimum Description Length

MDL – Minimize : size(tree) + size (misclassifications(tree))

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 45

Reduced-Error Pruning

• Reduced-error pruning, is to consider each of the decision nodes in the tree to be
candidates for pruning

• Pruning a decision node consists of removing the subtree rooted at that node,
making it a leaf node, and assigning it the most common classification of the
training examples affiliated with that node

• Nodes are removed only if the resulting pruned tree performs no worse than-the
original over the validation set.

• Reduced error pruning has the effect that any leaf node added due to coincidental
regularities in the training set is likely to be pruned because these same
coincidences are unlikely to occur in the validation set

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 46

The impact of reduced-error pruning on the accuracy of the decision tree is illustrated in below

figure

• The additional line in figure shows accuracy over the test examples as the tree is pruned. When

pruning begins, the tree is at its maximum size and lowest accuracy over the test set. As pruning
proceeds, the number of nodes is reduced and accuracy over the test set increases.

• The available data has been split into three subsets: the training examples, the validation examples
used for pruning the tree, and a set of test examples used to provide an unbiased estimate of
accuracy over future unseen examples. The plot shows accuracy over the training and test sets.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 47

Pros and Cons

Pro: Produces smallest version of most accurate T (subtree of T)

Con: Uses less data to construct T

Can afford to hold out Dvalidation?. If not (data is too limited), may make error worse
(insufficient Dtrain)

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 48

Rule Post-Pruning

Rule post-pruning is successful method for finding high accuracy hypotheses

Rule post-pruning involves the following steps:

1. Infer the decision tree from the training set, growing the tree until the training
data is fit as well as possible and allowing overfitting to occur.

2. Convert the learned tree into an equivalent set of rules by creating one rule for
each path from the root node to a leaf node.

3. Prune (generalize) each rule by removing any preconditions that result in
improving its estimated accuracy.

4. Sort the pruned rules by their estimated accuracy, and consider them in this
sequence when classifying subsequent instances.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 49

Converting a Decision Tree into Rules

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 50

For example, consider the decision tree. The leftmost path of the tree in below
figure is translated into the rule.

IF (Outlook = Sunny) ^ (Humidity = High)

THEN PlayTennis = No

Given the above rule, rule post-pruning would consider removing the preconditions

(Outlook = Sunny) and (Humidity = High)

• It would select whichever of these pruning steps produced the greatest

improvement in estimated rule accuracy, then consider pruning the second
precondition as a further pruning step.

• No pruning step is performed if it reduces the estimated rule accuracy.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 51

There are three main advantages by converting the decision tree to rules before
pruning

• Converting to rules allows distinguishing among the different contexts in which a
decision node is used. Because each distinct path through the decision tree node
produces a distinct rule, the pruning decision regarding that attribute test can be
made differently for each path.

• Converting to rules removes the distinction between attribute tests that occur near
the root of the tree and those that occur near the leaves. Thus, it avoid messy
bookkeeping issues such as how to reorganize the tree if the root node is pruned
while retaining part of the subtree below this test.

• Converting to rules improves readability. Rules are often easier for to understand.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 52

2. Incorporating Continuous-Valued Attributes

Continuous-valued decision attributes can be incorporated into the learned tree.

There are two methods for Handling Continuous Attributes

1. Define new discrete valued attributes that partition the continuous attribute value
into a discrete set of intervals.

E.g., {high ≡ Temp > 35º C, med ≡ 10º C < Temp ≤ 35º C, low ≡ Temp ≤ 10º C}

2. Using thresholds for splitting nodes

e.g., A ≤ a produces subsets A ≤ a and A > a

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 53

What threshold-based boolean attribute should be defined based on Temperature?

Pick a threshold, c, that produces the greatest information gain

• In the current example, there are two candidate thresholds, corresponding to the
values of Temperature at which the value of PlayTennis changes: (48 + 60)/2, and
(80 + 90)/2. The information gain can then be computed for each of the candidate
attributes, Temperature >54, and Temperature >85 and the best can be selected
(Temperature >54)

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 54

3. Alternative Measures for Selecting Attributes

The problem is if attributes with many values, Gain will select it ?

Example: consider the attribute Date, which has a very large number of possible
values. (e.g., March 4, 1979).

• If this attribute is added to the PlayTennis data, it would have the highest
information gain of any of the attributes. This is because Date alone perfectly
predicts the target attribute over the training data. Thus, it would be selected as the
decision attribute for the root node of the tree and lead to a tree of depth one,
which perfectly classifies the training data.

• This decision tree with root node Date is not a useful predictor because it perfectly
separates the training data, but poorly predict on subsequent examples.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 55

One Approach: Use GainRatio instead of Gain

• The gain ratio measure penalizes attributes by incorporating a split information,
that is sensitive to how broadly and uniformly the attribute splits the data

• where Si is subset of S, for which attribute A has value vi

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 56

4. Handling Training Examples with Missing Attribute Values

The data which is available may contain missing values for some attributes

Example: Medical diagnosis

• <Fever = true, Blood-Pressure = normal, …, Blood-Test = ?, …>

• Sometimes values truly unknown, sometimes low priority (or cost too high)

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 57

Example : PlayTennis

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 58

Strategies for dealing with the missing attribute value

• If node n test A, assign most common value of A among other training examples
sorted to node n

• Assign most common value of A among other training examples with same target
value

• Assign a probability pi to each of the possible values vi of A rather than simply
assigning the most common value to A(x)

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 59

5. Handling Attributes with Differing Costs

In some learning tasks the instance attributes may have associated costs.

For example:

• In learning to classify medical diseases, the patients described in terms of
attributes such as Temperature, BiopsyResult, Pulse, BloodTestResults, etc.

• These attributes vary significantly in their costs, both in terms of monetary cost
and cost to patient comfort

• Decision trees use low-cost attributes where possible, depends only on high-cost
attributes only when needed to produce reliable classifications

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 60

How to Learn A Consistent Tree with Low Expected Cost?

One approach is replace Gain by Cost-Normalized-Gain

Examples of normalization functions

Artificial Neural Networks

Overview

1. Introduction

2. ANN representations

3. Perceptron Training

4. Gradient Descent and Delta Rule

5. Multilayer networks and Backpropagation algorithm

6. Remarks on the backpropagation algorithm

7. An illustrative example: face recognition

8. Advanced topics in artificial neural networks

Introduction

- Human brain : densely interconnected network

of 1011 neurons each connected to 104 others

(neuron switching time : approx. 10-3 sec.)

- Properties of artificial neural nets (ANN’s):

• Many neuron-like threshold switching units

• Many weighted interconnections among units

• Highly parallel, distributed process

Appropriate problems for neural network learning

• Input is high-dimensional discrete or real-valued

(e.g. raw sensor input)

• Output is discrete or real valued

• Output is a vector of values

• Possibly noisy data

• Long training times accepted

• Fast evaluation of the learned function required.

• Not important for humans to understand the weights

Examples:

• Speech phoneme recognition

• Image classification

• Financial prediction

Appropriate problems for neural network learning

-ALVINN drives 70 mph on highways

-The ALVINN system uses backpropagation algorithm to learn to steer

an antonomous vehicle driving at speeds up to 70 miles per hour

Perceptron

• Input values → Linear weighted sum → Threshold

Decision surface of a perceptron

• Representational power of perceptrons

- Linearly separable case like (a) :

possible to classify by hyperplane,

- Linearly inseparable case like (b) :

impossible to classify

Perceptron training rule (delta rule)

wi wi + wi

wherewi = (t – o) xi

Where:

• t = c(x) is target value

• o is perceptron output

• is small constant (e.g., 0.1) called learning rate

Can prove it will converge

• If training data is linearly separable

Gradient descent

Derivation of gradient descent

 Gradient descent

- Error (for all training examples.):

- the gradient of E (partial differentiating) :

- direction : steepest increase in E.

- Thus, training rule is as follows.

(The negative sign : the direction that decreases E)

Derivation of gradient descent

where xid denotes the single input

components xi for training example d

- The weight update rule for gradient descent

Gradient descent and delta rule

 Because the error surface

contains only a single global

minimum, this algorithm will

converge to a weight vector with

minimum error, given a

sufficiently small is used

Hypothesis Space

- Error of different hypotheses

- For a linear unit with two weights, the hypothesis space H is the wo,w1 plane.

- This error surface must be parabolic with a single global minimum (we

desire a hypothesis with minimum error).

Stochastic approximation to gradient descent

- Stochastic gradient descent (i.e. incremental mode) can sometimes

avoid falling into local minima because it uses the various gradient of E

rather than overall gradient of E.

Summary

• Perceptron training rule guaranteed to succeed if

– training examples are linearly separable

– Sufficiently small learning rate η

• Linear unit training rule using gradient descent

– Converge asymptotically to min. error hypothesis

(Guaranteed to converge to hypothesis with minimum

squared error)

Multilayer networks and the backpropagation algorithm

 Speech recognition example of multilayer networks learned

by the backpropagation algorithm

 Highly nonlinear decision surfaces

Sigmoid Threshold Unit

The Backpropagation algorithm

Adding Momentum

 Often include weight momentum α

- nth iteration update depend on (n-1)th iteration

- : constant between 0 and 1 (momentum)

 Roles of momentum term

 The effect of keeping the ball rolling through small local

minima in the error surface

 The effect of gradually increasing the step size of the

search in regions (greatly improves the speed of learning)

Convergence and Local Minima

 Gradient descent to some local minimum

– Perhaps not global minimum...

– Add momentum

– Stochastic gradient descent

Expressive Capabilities of ANNs

Hidden layer representations

Hidden layer representations

- This 8x3x8 network was trained to learn the identity function.

- 8 training examples are used.

- After 5000 training iterations, the three hidden unit values encode

the eight distinct inputs using the encoding shown on the right.

Learning the 8x3x8 network

- Most of the interesting weight

changes occurred during the

first 2500 iterations.

Generalization, Overfitting, and Stopping Criterion

• Termination condition

– Until the error E falls below some predetermined threshold

• Techniques to address the overfitting problem

• Weight decay : Decrease each weight by some small factor

during each iteration.

• Cross-validation (k-fold cross-validation)

Neural Nets for Face Recognition
(http://www.cs.cmu.edu/tom/faces.html)

• Training images : 20 different persons with 32 images per person.

• After 260 training images, the network achieves an accuracy of

90% over test set.

• Algorithm parameters : η=0.3, α=0.3

http://www.cs.cmu.edu/tom/faces.html)

Alternative Error Functions

• Penalize large weights: (weight decay) : Reducing the risk of

overfitting

• Train on target slopes as well as values:

• Minimizing the cross entropy : Learning a probabilistic output

function (chapter 6)

 td log od (1 td) log(1 od)
d∈ D

Recurrent Networks

(a) (b)

(a) Feedforward network

(b) Recurrent network

(c) Recurrent network unfolded

in time

(c)

Dynamically Modifying Network Structure

• To improve generalization accuracy and training

efficiency

• Cascade-Correlation algorithm (Fahlman and Lebiere 1990)

– Start with the simplest possible network (no hidden units) and

add complexity

• Lecun et al. 1990

– Start with the complex network and prune it as we find that

certain connectives are inessential.

Evaluating Hypotheses

 Context

➔

Motivation

' Estimating Hypothesis Accuracy

' Basics of Sampling Theory

' Difference in Error of Two Hypotheses

' Comparing Learning Algorithms

' Summary

Motivation

' Goal: Introduction to statistical methods for estimating

hypothesis accuracy, focusing on the followings:

✔ Given the observed accuracy of a hypothesis over a limited

sample of data, how well does this estimate its accuracy over

additional examples?

✔ Given that one hypothesis outperforms another over some

sample of data, how probable is it that this hypothesis is more

accurate in general?

✔ When data is limited what is the best way to use this data to

both learn a hypothesis and estimate its accuracy?

Motivation 2

' It is important to evaluate the performance of the learned

hypotheses as precisely as possible:

✔ To understand whether to use the hypothesis

✗ Example: Learning from limited-size database indicating the

effectiveness of different medical treatments

✔ Evaluating hypotheses is an integral component of many learning

methods

✗ Example: in post-pruning decision trees to avoid overfiting

✔ Methods for comparing the accuracy of two hypotheses

✔ Methods for comparing two learning algorithms when only limited

data is available

Motivation 3

' Estimating the accuracy of hypothesis is relatively straightforward

when data is plentiful.

' Given only a limited set of data, two key difficulties arise:

✔ Bias in the estimate:

✗ Observed accuracy of the learned hypothesis over the training examples

is often a poor estimator of its accuracy over future examples.

✗ To obtain an unbiased estimate of future accuracy, we typically test the

hypothesis on some set of test examples chosen independently of training

examples and the hypothesis.

✔ Variance in the estimate:

✗ The measured accuracy can still vary from the true accuracy, depending

on the makeup of the particular set of test examples.

Context

' Motivation

➔ Estimating Hypothesis Accuracy

✔ Sample Error and True Error

' Basics of Sampling Theory

' Difference in Error of Two Hypotheses

' Comparing Learning Algorithms

' Summary

Estimating Hypothesis Accuracy

' Setting:

✔ Some set of possible instances X over which various target functions

may be defined

✔ Different instances in X may be encountered with different

frequencies:

✗ Unknown the probability distribution D that defines the probability of

encountering each instance in X

✗ D says nothing about whether x is a positive or a negative example

✔ Learning task: Learn target concept or target function f by considering

a space H of possible hypotheses

✔ Training examples are provided to the learner by a trainer

✗ who gives each instance independently

✗ according to the distribution D,

✗ then forwards the instance x along with its correct target value

learner

f(x) to the

Sample Error and True Error

' The sample error of a hypothesis with respect to some sample S of

instances given from X is the fraction of S that it misclassifies:

✔ Def: The sample error of a hypothesis h with respect to the target

function f and data sample S is

Where

errorS h
1

n x S

f x ,h x

' n is the number of examples in S,

' the quantity f x ,h x is 1 if f x h x and 0 otherwise

Sample Error and True Error 2

' The true error of a hypothesis is the probability that it will

misclassify a single randomly given instance from the

distribution D.

✔ Def: The true error of hypothesis h with respect to target function f

and distribution D, is the probability that h will misclassify an

instance drawn at random according to D

errorD h Prx D f x h x

Here the notation Pr x D denotes that the probability is taken over the

instance distribution D.

' To wish to know is the true error errorD h .

' Main question: How good is an estimate of errorD h provided

by errorS h ?

Context

' Motivation

' Estimating Hypothesis Accuracy

➔ Basics of Sampling Theory

✔ Error Estimation and Estimating Binomial Proportions

✔ The Binomial Distribution

✔ Mean and Variance

✔ Confidence Intervals

✔ Two-Sided and One-Sided Bounds

' Difference in Error of Two Hypotheses

' Comparing Learning Algorithms

' Summary

Basics of Sampling Theory

S

' Question: How does the derivation between sample error and true

error depend on the size of the data sample?

' Equal with the statistical problem: The problem of estimating the

proportion of a population that exhibits some property, given the

observed proportion over some random sample of the population .

' Here: The property of interest is that h misclassifies the example

' Answer:

✔ When measuring the sample error we are performing an experiment

with a random outcome.

✔ Repeating this experiment many times, each time drawing a different

random sample set Si of size n, we would expect to observe

different values for the various errorS h depending on random

differences in the makeup of the various
i

S

✔ In such cases error h
i

the outcome of the ith such experiment is a

random variable

i

S S S

Error Estimation and Estimating Binomial

Proportions 2

' Imagine:

✔ Run k random experiments,

✔ Measuring the random variables

error h , error h error h

1 2 k

✔ Plot a histogram displaying the frequency with which we observed

each possible error value

' Result: histogram

The Binomial Distribution

' General setting to which the Binomial distribution applies:

✔ There is a base or underlying experiment whose outcome can be described by a

random variable, say Y. It can take on two possible values.

✔ The probability that Y=1 on any single trial of the underlying experiment is

given by some constant p, independent of the outcome of any other

experiment.

The probability that Y=0 is therefore 1-p.

Typically, p is not known in advance, and the problem is to estimate it.

✔ A series of n independent trials of the underlying experiment is performed,

producing the sequence of independent, identically distributed random

variables Y 1, Y 2 Y k.

Let R denote the number of trials for which Y i 1 in this series of n

experiments
R

i 1

✔ The probability that R will take on a specific value r is given by the Binomial

distribution: Pr R r
 n!

r ! n r !

pr 1 p n r

Mean and Variance

' Def: Consider Y y1 , y2 , yn

E Y

The expected value of Y, E[Y], is

i 1

' Example: If Y takes on the value 1 with probability 0.7 and the

value 2 with probability 0.3 then its expected value is

1 0.7 2 0.3 1.3

' In case of a random variable Y governed by a Binomial

distribution the expected value is:

E Y n p

Mean and Variance 2

' Variance captures the „width“ or „spread“ of the probability

distribution; that is it captures how far the random variable is

expected to vary from its mean value

' Def: The variance of Y, Var[Y], is
Var Y E Y E Y 2

' The square root of the variance is called the standard deviation of

Y, denoted by Y

' Def: The standard deviation of a random variable Y,
E Y E Y 2

Y is

Y

' In case of a random variable Y governed by Binomial distribution

the variancVeaarnYd then

Y

spta1ndarpd deviation are defined as follows:

n p 1 p

Confidence Intervals

errorS h 1 errorS h

n

' Describe:

✔ Give an interval within which the true value is expected to fall, along

with the probability with which it is expected to fall into this interval

' Def: An N% confidence interval for some parameters p is an

interval that is expected with probability N% to contain p.

' How confidence intervals for
errorD h

can be derived:

✔ Binomial probability distribution governing the estimator errorS h
✔ The mean value of distribution is

✔ Standard deviation is

erro D

errorS h

' Goal: Derive a 95% confidence interval =>

find the interval centered around the mean value

errorD h ,

which is wide enough to contain 95% of total probability under

this distribution

Confidence Intervals 2

' Question: How can the size of interval that contains N% of the

probability mass be found for given N ?

' Problem: Unfortunately for the Binomial distribution this

calculation can be quite tedious.

' But: Binomial distribution can be closely approximated by

Normal distribution

Confidence Intervals 3

2
2

1 x

2

' Normal or gaussian distribution is a bell-shaped distribution

defined by the probability density fun2 ction

p x
 1

e

' If the random variable X follows a normal distribution then:

✔ The probability that Xb will fall into the interval (a,b) is given by
p X dx

a

✔ The expected, or meaEn vXalue of X, E[X], is

✔ The variance of X, VVaarr(XX) is 2

✔ The standard deviation of X,
X

Two-Sided and One-Sided Bounds

' Two-sided bound: It bounds the estimated quantity from above

and below

' One-sided bound: If we are interested in questions like: What is

the probability that errorD h is at most U

Two-Sided and One-Sided Bounds 2

' If the sample error is considered as normal distributed indicating

that:

✔ the errorD h couches with N% probability in the interval

errorS h zn

where
zN

is a constant

Confidence level N% 50.00% 68.00% 80.00% 90.00% 95.00% 98.00% 99.00%

Constant 0.67 1 1.28 1.64 1.96 2.33 2.58

Table 1: Values of zN for two sided N% confidence intervals

errorS h 1 errorS h

n

Two-Sided and One-Sided Bounds 3

0.24 0.76

50

' Example:

✔ n =50

✔ Hypothesis h makes r =16 errors =>

✔ Using the values from Table 1

errorS h

50

✗ With 99% probability is

0.32 2.58

errorD h in the interval

✗ If the numbers of errors is 12 then

probability

errorD h
is in the interval with 50%

0.24 0.67 0.24 0.04

50

Two-Sided and One-Sided Bounds 4

' One-sided error bound

It can be computed with half of the probability of the error from

normal distributed two-sided error bound

' Example:

✔ h delivers 12 errors, n= 40

✔ It leads to a (two sided) 95% confidence interval of
100 1 95 0.05

✔ In this case so

0.30 0.14
=>

✔ eTrhrours, whe can apply th0.e30ru0l.e1
100 1 2 97.5

w ith confidence that
D is at most

errorD h
✔ Making no assumption about the lower bound on

erro

✔ Thus we have a one-sided error bound on error

with double the confidence that we had in the corresponding two-

sided bound

D

Context

' Motivation

' Estimating Hypothesis Accuracy

' Basics of Sampling Theory

➔ Difference in Error of Two Hypotheses

✔ Hypothesis Testing

' Comparing Learning Algorithms

' Summary

1 2

Difference in Errors of Two Hypotheses

' Consider:

✔ two hypotheses h1 and h2 for some discrete-valued target function

✔
h1 has been tested on a sample

examples

S1 containing n1 randomly drawn

✔
h2

has been tested on a sample
S 2 containing

n2 randomly drawn

examples

' Suppose we wish to estimate the difference d between the true

errors of these two hypotheses

d errorD h1 errorD h2

' 4-step procedure to derive confidence interval estimates for d

✔ Choose the estimator d errorS h1 errorS h2

✔ We do not prove but it can be shown that d gives an unbiased

estimate of d; that is E d d

Hypothesis Testing

1 2

S S 2

1 S S S

' Question: What is the probability distribution governing the

random variable d ?

' Answer:

✔
n1 , n2 both errors errorS h1 and errorS h2 follow a

distribution that is approximately normal

✔ Difference of two normal distributions is also normal =>
d

is also approximately normal

✔ The variance of this distribution is the sum of the variances of

error h
1

and error h
2

✔ We have
2

errorS h1

d
d

1 error h
1

n
1

error h
2

1 error h
2

n
2

✔ For random vari2able obeying a normal distribution with mean d

and variance

the N% confidence interval estimate for d is d zN

1

1 2 2

Hypothesis Testing 2

 1 1

n1

errorS h1 1 errorS h1
 2 2

n2

errorS h2 1 errorS h2

2

S

✔ So d zN

zN is the same constant as described in Table 1

' Test over same data

✔ h1 And h2 are tested on a single sample S (where S is still

independent of h1 and h2)
d

✔ Redefine :
d error h

errorS h2

d

✔ The variance in this newd

variance of the original

will usually be smaller than the

✔ Using a single sample S eliminatesSth1e varianSce due to random

differences in the compositions of and

1

Context

' Motivation

' Estimating Hypothesis Accuracy

' Basics of Sampling Theory

' Difference in Error of Two Hypotheses

➔ Comparing Learning Algorithms

' Summary

Comparing Learning Algorithms

' Goal: Comparing the performance of two learning algorithm
L A and LB

' Question:

✔ What is an appropriate test for comparing learning algorithms?

✔ How can we determine whether an observed difference between the

algorithms is statistically significant?

' Active debate within the machine-learning research community
regarding the best method for comparison

L A LB

' Task: Determine which of and is the better learning

method on average for learning some particular target function f

✔ „On average“ is to consider the relative performance of these two

algorithms averaged over all the training set of size n that might be

drawn from the underlying instance distribution D

ES D errorD L A S errorD LB S

Comparing Learning Algorithms 2

i i

' In practice:

✔ We have only a limited sample D0

✔ Divide D0 into a training set S0 and a disjoint test set T 0

✔ The training data can be used to train both
L A and LB

✔ Test set can be used to compare the accuracy of the two learned

hypothesis error
0

LA S0 error
0

LB S0

' Improvement:

✔ Partition the available data
D0 into k disjoint subsets

T 1 ,T 2 , ,T k

of equal

size, where this size is at least 30

✔ For i Tfrom 1 to k, do S
use i for the test and the remaining data for training set i

Si D0 T i
hA LA Si

hB LB Si

i errorT hA errorT hB k

1

k i

T T

Comparing Learning Algorithms 3

' The approximate N% confidence interval for estima ting the

quantity in error
0

LA S0

error
0

t N , k 1 s

LB S0 using is given by

where

t N , k 1 is a constant that plays a role analogous to that of
zN

S
' defined as following S

 1 k

k k 1 i 1

Confidence lev

 90% 95%

 = 2 2,92 4,3

 = 5 2,02 2,57

 = 10 1,81 2,23

 = 20 1,72 2,09

 = 30 1,7 2,04

 = ## 1,66 1,98

 =

 1,64 1,96

T T

i

2

Context

' Motivation

' Estimating Hypothesis Accuracy

' Basics of Sampling Theory

' Difference in Error of Two Hypotheses

' Comparing Learning Algorithms

➔ Summary

error

2

Summary

' Statistical theory provides a basis for estimating the true error

(errorD h) of hypothesis h, based on its observed error (errorS h)

over a sample S of data.

' In general, the problem of estimating confidence intervals is

approached by identifying the parameter to be estimated (

D h

)

and an estimator (errorS h) for this quantity.

' Because the estimator is a random variable it can be characterised

by the probability distribution that governs its value.

' Confidence intervals can then be calculated by determining the

interval that contains the desired probability mass under this

distribution.

' A cause of estimation error is the variance in the estimate. Even with

an unbiased estimator, the observed value of the estimator is likely

to vary from one experiment to another.

The variance of the distribution governing the estimat or

characterises how widely this estimate is likely to

Summary 2

' Comparing the relative effectiveness of two learning algorithms is

an estimation problem that is relatively easy when data and time

are unlimited, but more difficult when these resources are

limited.

' One approach to run the learning algorithms on different subsets

of available data, testing the learned hypotheses on the remaining

data, then averaging the result of these experiments.

' In most cases considered here, deriving confidence intervals

involves making a number of assumptions and approximations.

MODULE -4

BAYEIAN LEARNING

2

CONTENT
• Introduction

• Bayes theorem

• Bayes theorem and concept learning

• Maximum likelihood and Least Squared Error Hypothesis

• Maximum likelihood Hypotheses for predicting probabilities

• Minimum Description Length Principle

• Naive Bayes classifier

• Bayesian belief networks

• EM algorithm

3

INTRODUCTION
Bayesian learning methods are relevant to study of machine learning for two
different reasons.

• First, Bayesian learning algorithms that calculate explicit probabilities for
hypotheses, such as the naive Bayes classifier, are among the most practical
approaches to certain types of learning problems

• The second reason is that they provide a useful perspective for understanding
many learning algorithms that do not explicitly manipulate probabilities.

4

Features of Bayesian Learning Methods

• Each observed training example can incrementally decrease or increase the estimated
probability that a hypothesis is correct. This provides a more flexible approach to
learning than algorithms that completely eliminate a hypothesis if it is found to be
inconsistent with any single example

• Prior knowledge can be combined with observed data to determine the final
probability of a hypothesis. In Bayesian learning, prior knowledge is provided by
asserting (1) a prior probability for each candidate hypothesis, and (2) a probability
distribution over observed data for each possible hypothesis.

• Bayesian methods can accommodate hypotheses that make probabilistic predictions

• New instances can be classified by combining the predictions of multiple hypotheses,
weighted by their probabilities.

• Even in cases where Bayesian methods prove computationally intractable, they can
provide a standard of optimal decision making against which other practical methods
can be measured.

5

Practical difficulty in applying Bayesian methods

• One practical difficulty in applying Bayesian methods is that they typically require

initial knowledge of many probabilities. When these probabilities are not known
in advance they are often estimated based on background knowledge, previously
available data, and assumptions about the form of the underlying distributions.

• A second practical difficulty is the significant computational cost required to
determine the Bayes optimal hypothesis in the general case. In certain specialized
situations, this computational cost can be significantly reduced.

6

BAYES THEOREM

Bayes theorem provides a way to calculate the probability of a hypothesis based on
its prior probability, the probabilities of observing various data given the hypothesis,
and the observed data itself.

Notations

• P(h) prior probability of h, reflects any background knowledge about the chance
that h is correct

• P(D) prior probability of D, probability that D will be observed

• P(D|h) probability of observing D given a world in which h holds

• P(h|D) posterior probability of h, reflects confidence that h holds after D has been
observed

7

Bayes theorem is the cornerstone of Bayesian learning methods because it provides
a way to calculate the posterior probability P(h|D), from the prior probability P(h),
together with P(D) and P(D(h).

P(h|D) increases with P(h) and with P(D|h) according to Bayes theorem.

P(h|D) decreases as P(D) increases, because the more probable it is that D will be
observed independent of h, the less evidence D provides in support of h.

Maximum a Posteriori (MAP) Hypothesis

8

• In many learning scenarios, the learner considers some set of candidate hypotheses
H and is interested in finding the most probable hypothesis h ∈ H given the
observed data D. Any such maximally probable hypothesis is called a maximum a
posteriori (MAP) hypothesis.

• Bayes theorem to calculate the posterior probability of each candidate hypothesis is hMAP
is a MAP hypothesis provided

• P(D) can be dropped, because it is a constant independent of h

Maximum Likelihood (ML) Hypothesis

9

In some cases, it is assumed that every hypothesis in H is equally probable a priori

(P(hi) = P(hj) for all hi and hj in H).

In this case the below equation can be simplified and need only consider the term
P(D|h) to find the most probable hypothesis.

P(D|h) is often called the likelihood of the data D given h, and any hypothesis that
maximizes P(D|h) is called a maximum likelihood (ML) hypothesis

10

Example

Consider a medical diagnosis problem in which there are two alternative hypotheses
• The patient has a particular form of cancer (denoted by cancer)
• The patient does not (denoted by ¬ cancer)

The available data is from a particular laboratory with two possible outcomes: +
(positive) and - (negative)

11

• Suppose a new patient is observed for whom the lab test returns a positive (+)
result.

• Should we diagnose the patient as having cancer or not?

12

BAYES THEOREM AND CONCEPT LEARNING

What is the relationship between Bayes theorem and the problem of concept

learning?

Since Bayes theorem provides a principled way to calculate the posterior probability

of each hypothesis given the training data, and can use it as the basis for a

straightforward learning algorithm that calculates the probability for each possible

hypothesis, then outputs the most probable.

13

Brute-Force Bayes Concept Learning

We can design a straightforward concept learning algorithm to output the maximum
a posteriori hypothesis, based on Bayes theorem, as follows:

In order specify a learning problem for the BRUTE-FORCE MAP LEARNING

14

algorithm we must specify what values are to be used for P(h) and for P(D|h) ?

Lets choose P(h) and for P(D|h) to be consistent with the following assumptions:

• The training data D is noise free (i.e., di = c(xi))

• The target concept c is contained in the hypothesis space H

• We have no a priori reason to believe that any hypothesis is more probable than any other.

What values should we specify for P(h)?

15

• Given no prior knowledge that one hypothesis is more likely than another, it is
reasonable to assign the same prior probability to every hypothesis h in H.

• Assume the target concept is contained in H and require that these prior
probabilities sum to 1.

16

What choice shall we make for P(D|h)?

• P(D|h) is the probability of observing the target values D = (d1 . . .dm) for the

fixed set of instances (x1 . . . xm), given a world in which hypothesis h holds

• Since we assume noise-free training data, the probability of observing

classification di given h is just 1 if di = h(xi) and 0 if di # h(xi). Therefore,

17

Given these choices for P(h) and for P(D|h) we now have a fully-defined problem
for the above BRUTE-FORCE MAP LEARNING algorithm.

In a first step, we have to determine the probabilities for P(h|D)

18

To summarize, Bayes theorem implies that the posterior probability P(h|D) under
our assumed P(h) and P(D|h) is

where |VSH,D| is the number of hypotheses from H consistent with D

19

The Evolution of Probabilities Associated with Hypotheses

• Figure (a) all hypotheses have the same probability.

• Figures (b) and (c), As training data accumulates, the posterior probability for
inconsistent hypotheses becomes zero while the total probability summing to 1 is
shared equally among the remaining consistent hypotheses.

20

MAP Hypotheses and Consistent Learners

A learning algorithm is a consistent learner if it outputs a hypothesis that commits zero errors over
the training examples.

Every consistent learner outputs a MAP hypothesis, if we assume a uniform prior probability
distribution over H (P(hi) = P(hj) for all i, j), and deterministic, noise free training data (P(D|h) =1 if
D and h are consistent, and 0 otherwise).

Example:

• FIND-S outputs a consistent hypothesis, it will output a MAP hypothesis under the probability
distributions P(h) and P(D|h) defined above.

• Are there other probability distributions for P(h) and P(D|h) under which FIND-S outputs MAP
hypotheses? Yes.

• Because FIND-S outputs a maximally specific hypothesis from the version space, its output
hypothesis will be a MAP hypothesis relative to any prior probability distribution that favours more
specific hypotheses.

21

• Bayesian framework is a way to characterize the behaviour of learning algorithms

• By identifying probability distributions P(h) and P(D|h) under which the output is
a optimal hypothesis, implicit assumptions of the algorithm can be characterized
(Inductive Bias)

• Inductive inference is modelled by an equivalent probabilistic reasoning system
based on Bayes theorem

22

MAXIMUM LIKELIHOOD AND LEAST-SQUARED
ERROR HYPOTHESES

Consider the problem of learning a continuous-valued target function such as neural

network learning, linear regression, and polynomial curve fitting

A straightforward Bayesian analysis will show that under certain assumptions any

learning algorithm that minimizes the squared error between the output hypothesis

predictions and the training data will output a maximum likelihood (ML) hypothesis

23

Learning A Continuous-Valued Target Function

• Learner L considers an instance space X and a hypothesis space H consisting of some class of real-

valued functions defined over X, i.e., (∀ h ∈ H)[h : X → R] and training examples of the form

<xi,di>

• The problem faced by L is to learn an unknown target function f : X → R

• A set of m training examples is provided, where the target value of each example is corrupted by

random noise drawn according to a Normal probability distribution with zero mean (di = f(xi) + ei)

• Each training example is a pair of the form (xi ,di) where di = f (xi) + ei .

– Here f(xi) is the noise-free value of the target function and ei is a random variable representing
the noise.

– It is assumed that the values of the ei are drawn independently and that they are distributed
according to a Normal distribution with zero mean.

• The task of the learner is to output a maximum likelihood hypothesis, or, equivalently, a MAP
hypothesis assuming all hypotheses are equally probable a priori.

24

Learning A Linear Function

• The target function f corresponds to the solid

line.

• The training examples (xi , di) are assumed to

have Normally distributed noise ei with zero

mean added to the true target value f (xi).

• The dashed line corresponds to the hypothesis
hML with least-squared training error, hence the

maximum likelihood hypothesis.

• Notice that the maximum likelihood hypothesis is

not necessarily identical to the correct

hypothesis, f, because it is inferred from only a

limited sample of noisy training data

25

Before showing why a hypothesis that minimizes the sum of squared errors in this setting is also a
maximum likelihood hypothesis, let us quickly review probability densities and Normal

distributions

Probability Density for continuous variables

e: a random noise variable generated by a Normal probability distribution

<x1 . . . xm>: the sequence of instances (as before)

<d1 . . . dm>: the sequence of target values with di = f(xi) + ei

26

Normal Probability Distribution (Gaussian Distribution)

A Normal distribution is a smooth, bell-shaped distribution that can be completely
characterized by its mean μ and its standard deviation σ

27

28

Using the previous definition of hML we have

Assuming training examples are mutually independent given h, we can write P(D|h) as the product of
the various (di|h)

Given the noise ei obeys a Normal distribution with zero mean and unknown variance σ2 , each di

must also obey a Normal distribution around the true targetvalue f(xi). Because we are writing the
expression for P(D|h), we assume h is the correct description of f. Hence, µ = f(xi) = h(xi)

29

It is common to maximize the less complicated logarithm, which is justified because of the
monotonicity of function p.

The first term in this expression is a constant independent of h and can therefore be discarded

Maximizing this negative term is equivalent to minimizing the corresponding positive term.

30

Finally Discard constants that are independent of h

• the hML is one that minimizes the sum of the squared errors

Why is it reasonable to choose the Normal distribution to characterize noise?

• good approximation of many types of noise in physical systems

• Central Limit Theorem shows that the sum of a sufficiently large number of independent,
identically distributed random variables itself obeys a Normal distribution

Only noise in the target value is considered, not in the attributes describing the instances
themselves

31

MAXIMUM LIKELIHOOD HYPOTHESES FOR
PREDICTING PROBABILITIES

Consider the setting in which we wish to learn a nondeterministic (probabilistic)
function f : X → {0, 1}, which has two discrete output values.

We want a function approximator whose output is the probability that f(x) = 1

In other words , learn the target function

f’ : X → [0, 1] such that f’ (x) = P(f(x) = 1)

How can we learn f' using a neural network?

Use of brute force way would be to first collect the observed frequencies of 1's and
0's for each possible value of x and to then train the neural network to output the
target frequency for each x.

32

What criterion should we optimize in order to find a maximum likelihood hypothesis
for f' in this setting?

• First obtain an expression for P(D|h)

• Assume the training data D is of the form D = {(x1, d1) . . . (xm, dm)}, where di is the observed 0 or
1 value for f (xi).

• Both xi and di as random variables, and assuming that each training example is drawn
independently, we can write P(D|h) as

Applying the product rule

The probability P(di|h, xi)

33

Re-express it in a more mathematically manipulable form, as

Equation (4) to substitute for P(di |h, xi) in Equation (5) to obtain

We write an expression for the maximum likelihood hypothesis

34

The last term is a constant independent of h, so it can be dropped

It easier to work with the log of the likelihood, yielding

Equation (7) describes the quantity that must be maximized in order to obtain the maximum
likelihood hypothesis in our current problem setting

35

Gradient Search to Maximize Likelihood in a Neural Net

Derive a weight-training rule for neural network learning that seeks to maximize G(h, D) using
gradient ascent

• The gradient of G(h, D) is given by the vector of partial derivatives of G(h, D) with respect to the
various network weights that define the hypothesis h represented by the learned network

• In this case, the partial derivative of G(h, D) with respect to weight wjk from input k to unit j is

36

Suppose our neural network is constructed from a single layer of sigmoid units. Then,

where xijk is the kth input to unit j for the ith training example, and d(x) is the derivative of the sigmoid
squashing function.

Finally, substituting this expression into Equation (1), we obtain a simple expression for the
derivatives that constitute the gradient

37

Because we seek to maximize rather than minimize P(D|h), we perform gradient ascent rather than
gradient descent search. On each iteration of the search the weight vector is adjusted in the direction
of the gradient, using the weight update rule

where η is a small positive constant that determines the step size of the i gradient ascent search

38

It is interesting to compare this weight-update rule to the weight-update rule used by the
BACKPROPAGATION algorithm to minimize the sum of squared errors between predicted and
observed network outputs.

The BACKPROPAGATION update rule for output unit weights, re-expressed using our current
notation, is

39

MINIMUM DESCRIPTION LENGTH PRINCIPLE

• A Bayesian perspective on Occam’s razor

• Motivated by interpreting the definition of hMAP in the light of basic concepts from information
theory.

which can be equivalently expressed in terms of maximizing the log2

or alternatively, minimizing the negative of this quantity

• This equation can be interpreted as a statement that short hypotheses are preferred, assuming a
particular representation scheme for encoding hypotheses and data

40

Introduction to a basic result of information theory

• Consider the problem of designing a code to transmit messages drawn at random

• i is the message

• The probability of encountering message i is pi

• Interested in the most compact code; that is, interested in the code that minimizes the
expected number of bits we must transmit in order to encode a message drawn at random

• To minimize the expected code length we should assign shorter codes to messages that are
more probable

• Shannon and Weaver (1949) showed that the optimal code (i.e., the code that minimizes
the expected message length) assigns - log, pi bitst to encode message i.

• The number of bits required to encode message i using code C as the description length

of message i with respect to C, which we denote by Lc(i).

41

Interpreting the equation

• -log2P(h): the description length of h under the optimal encoding for the hypothesis space H
LCH (h) = −log2P(h), where CH is the optimal code for hypothesis space H.

• -log2P(D | h): the description length of the training data D given hypothesis h, under the
optimal encoding fro the hypothesis space H: LCH (D|h) = −log2P(D| h) , where C D|h is the
optimal code for describing data D assuming that both the sender and receiver know the
hypothesis h.

Rewrite Equation (1) to show that hMAP is the hypothesis h that minimizes the sum given by the
description length of the hypothesis plus the description length of the data given the hypothesis.

where CH and CD|h are the optimal encodings for H and for D given h

42

The Minimum Description Length (MDL) principle recommends choosing the hypothesis that
minimizes the sum of these two description lengths of equ.

Minimum Description Length principle:

Where, codes C1 and C2 to represent the hypothesis and the data given the hypothesis

The above analysis shows that if we choose C1 to be the optimal encoding of hypotheses CH, and if
we choose C2 to be the optimal encoding CD|h, then hMDL = hMAP

43

Application to Decision Tree Learning

Apply the MDL principle to the problem of learning decision trees from some training data.

What should we choose for the representations C1 and C2 of hypotheses and data?

• For C1: C1 might be some obvious encoding, in which the description length grows with the
number of nodes and with the number of edges

• For C2: Suppose that the sequence of instances (x1 . . .xm) is already known to both the transmitter

and receiver, so that we need only transmit the classifications (f (x1) . . . f (xm)).

Now if the training classifications (f (x1) . . .f(xm)) are identical to the predictions of the
hypothesis, then there is no need to transmit any information about these examples. The
description length of the classifications given the hypothesis ZERO

If examples are misclassified by h, then for each misclassification we need to transmit a message
that identifies which example is misclassified as well as its correct classification

The hypothesis hMDL under the encoding C1 and C2 is just the one that minimizes the sum of these
description lengths.

44

• MDL principle provides a way for trading off hypothesis complexity for the number of errors
committed by the hypothesis

• MDL provides a way to deal with the issue of overfitting the data.

• Short imperfect hypothesis may be selected over a long perfect hypothesis.

Computational Learning

Machine Learning: Lecture 8

Theory

(Based on Chapter 7 of Mitchell T..,

Machine Learning, 1997)

1

Overview
 Are there general laws that govern learning?

 Sample Complexity: How many training examples are needed for

a learner to converge (with high probability) to a successful

hypothesis?

 Computational Complexity: How much computational effort is

needed for a learner to converge (with high probability) to a

successful hypothesis?

 Mistake Bound: How many training examples will the learner

misclassify before converging to a successful hypothesis?

 These questions will be answered within two analytical

frameworks:

 The Probably Approximately Correct (PAC) framework

 The Mistake Bound framework
2

Overview (Cont’d)
 Rather than answering these questions for
individual learners, we will answer them for
broad classes of learners. In particular we will
consider:
 The size or complexity of the hypothesis space

considered by the learner.

 The accuracy to which the target concept must be
approximated.

 The probability that the learner will output a
successful hypothesis.

 The manner in which training examples are
presented to the learner.

3

The PAC Learning Model

 Definition: Consider a concept class C
defined over a set of instances X of length n
and a learner L using hypothesis space H. C is

PAC-learnable by L using H if for all cC,

distributions D over X, such that 0< < 1/2,

and such that 0< <1/2, learner L will, with

probability at least (1-), output a hypothesis

hH such that errorD(h) , in time that is

polynomial in 1/ , 1/ , n , and size(c).

4

Sample Complexity for Finite
Hypothesis Spaces
 Given any consistent learner, the number of examples

sufficient to assure that any hypothesis will be probably

(with probability (1-)) approximately (within error)

correct is m= 1/ (ln|H|+ln(1/))

 If the learner is not consistent, m= 1/22 (ln|H|+ln(1/))

 Conjunctions of Boolean Literals are also PAC-

Learnable and m= 1/ (n.ln3+ln(1/))

 k-term DNF expressions are not PAC learnable because

even though they have polynomial sample complexity,

their computational complexity is not polynomial.

 Surprisingly, however, k-term CNF is PAC learnable.
5

Sample Complexity for Infinite
Hypothesis Spaces I: VC-Dimension

 The PAC Learning framework has 2 disadvantages:
 It can lead to weak bounds
 Sample Complexity bound cannot be established for

infinite hypothesis spaces
 We introduce new ideas for dealing with these problems:

 Definition: A set of instances S is shattered by hypothesis
space H iff for every dichotomy of S there exists some
hypothesis in H consistent with this dichotomy.

 Definition: The Vapnik-Chervonenkis dimension,
VC(H), of hypothesis space H defined over instance
space X is the size of the largest finite subset of X

shattered by H. If arbitrarily large finite sets of X can b
shattered by H, then VC(H)=

6

Sample Complexity for Infinite
Hypothesis Spaces II

 Upper-Bound on sample complexity, using the VC-

Dimension: m 1/ (4log2(2/)+8VC(H)log2(13/)

 Lower Bound on sample complexity, using the VC-

Dimension:

Consider any concept class C such that VC(C) 2, any

learner L, and any 0 < < 1/8, and 0 < < 1/100. Then

there exists a distribution D and target concept in C

such that if L observes fewer examples than

max[1/ log(1/),(VC(C)-1)/(32)]

then with probability at least , L outputs a hypothesis

h having errorD(h)> .
7

VC-Dimension for Neural Networks
 Let G be a layered directed acyclic graph with n

input nodes and s2 internal nodes, each having
at most r inputs. Let C be a concept class over Rr

of VC dimension d, corresponding to the set of
functions that can be described by each of the s

internal nodes. Let CG be the G-composition of

C, corresponding to the set of functions that can

be represented by G. Then VC(CG)2ds log(es),

where e is the base of the natural logarithm.

 This theorem can help us bound the VC-

Dimension of a neural network and thus, its

sample complexity (See, [Mitchell, p.219])!

8

The Mistake Bound Model of Learning

 The Mistake Bound framework is different from

the PAC framework as it considers learners that

receive a sequence of training examples and that

predict, upon receiving each example, what its

target value is.

 The question asked in this setting is: “How

many mistakes will the learner make in its

predictions before it learns the target concept?”

 This question is significant in practical settings

where learning must be done while the system is

in actual use.

9

Optimal Mistake Bounds

 Definition: Let C be an arbitrary nonempty

concept class. The optimal mistake bound

for C, denoted Opt(C), is the minimum over

all possible learning algorithms A of MA(C).
Opt(C)=minALearning_Algorithm MA(C)

 For any concept class C, the optimal

mistake bound is bound as follows:

VC(C) Opt(C) log2(|C|)

10

A Case Study: The Weighted-
Majority Algorithm

ai denotes the ith prediction algorithm in the pool A of
algorithm. wi denotes the weight associated with ai.

 For all i initialize wi <-- 1
 For each training example <x,c(x)>

 Initialize q0 and q1 to 0
 For each prediction algorithm ai

• If ai(x)=0 then q0 <-- q0+wi

• If ai(x)=1 then q1 <-- q1+wi

 If q1 > q0 then predict c(x)=1
 If q0 > q1 then predict c(x) =0
 If q0=q1 then predict 0 or 1 at random for c(x)
 For each prediction algorithm ai in A do

• If ai(x) c(x) then wi <-- wi
11

Relative Mistake Bound for the
Weighted-Majority Algorithm

 Let D be any sequence of training examples, let A

be any set of n prediction algorithms, and let k be

the minimum number of mistakes made by any

algorithm in A for the training sequence D. Then

the number of mistakes over D made by the

Weighted-Majority algorithm using =1/2 is at

most 2.4(k + log2n).

 This theorem can be generalized for any 0 1

where the bound becomes

(k log2 1/ + log2n)/log2(2/(1+))
12

INSTANCE-BASE LEARNING

• Instance-based learning methods simply store the training examples

instead of learning explicit description of the target function.

– Generalizing the examples is postponed until a new instance must be classified.

– When a new instance is encountered, its relationship to the stored examples is

examined in order to assign a target function value for the new instance.

• Instance-based learning includes nearest neighbor, locally weighted

regression and case-based reasoning methods.

• Instance-based methods are sometimes referred to as lazy learning

methods because they delay processing until a new instance must be

classified.

• A key advantage of lazy learning is that instead of estimating the target

function once for the entire instance space, these methods can estimate

it locally and differently for each new instance to be classified.

k-Nearest Neighbor Learning

(xir xjr)2

r 1

n

• k-Nearest Neighbor Learning algorithm assumes all instances

correspond to points in the n-dimensional space Rn

• The nearest neighbors of an instance are defined in terms of Euclidean

distance.

• Euclidean distance between the instances xi = <xi1,…,xin> and

xj = <xj1,…,xjn> are:

d (xi, xj)

• For a given query instance xq, f(xq) is calculated the function values of

k-nearest neighbor of xq

k-Nearest Neighbor Learning

CS464 Introduction to Machine Learning 3

=

• Store all training examples <xi,f(xi)>

• Calculate f(xq) for a given query instance xq using k-nearest neighbor

• Nearest neighbor: (k=1)

– Locate the nearest traing example xn, and estimate f(xq) as

– f(xq) f(xn)

• k-Nearest neighbor:

– Locate k nearest traing examples, and estimate f(xq) as

– If the target function is real-valued, take mean of f-values of k

nearest neighbors.

f(xq)

– If the target function is discrete-valued, take a vote among f-values

of k nearest neighbors.

When To Consider Nearest Neighbor

CS464 Introduction to Machine Learning 4

• Instances map to points in Rn

• Less than 20 attributes per instance

• Lots of training data

• Advantages

– Training is very fast

– Learn complex target functions

– Can handle noisy data

– Does not loose any information

• Disadvantages

– Slow at query time

– Easily fooled by irrelevant attributes

Distance-Weighted kNN

CS464 Introduction to Machine Learning 5

Curse of Dimensionality

CS464 Introduction to Machine Learning 6

Locally Weighted Regression

CS464 Introduction to Machine Learning 7

• KNN forms local approximation to f for each query point xq

• Why not form an explicit approximation f(x) for region surrounding xq

 Locally Weighted Regression

• Locally weighted regression uses nearby or distance-weighted training examples to

form this local approximation to f.

• We might approximate the target function in the neighborhood surrounding x, using a

linear function, a quadratic function, a multilayer neural network.

• The phrase "locally weighted regression" is called

– local because the function is approximated based only on data near the query

point,

– weighted because the contribution of each training example is weighted by its

distance from the query point, and

– regression because this is the term used widely in the statistical learning

community for the problem of approximating real-valued functions.

Locally Weighted Regression

CS464 Introduction to Machine Learning 8

• Given a new query instance xq, the general approach in locally

weighted regression is to construct an approximation f that fits the

training examples in the neighborhood surrounding xq.

• This approximation is then used to calculate the value f(xq), which is

output as the estimated target value for the query instance.

Locally Weighted Linear Regression

CS464 Introduction to Machine Learning 9

Kernel function K is the function of distance that is used to determine

the weight of each training example.

Radial Basis Functions

CS464 Introduction to Machine Learning 10

• One approach to function approximation that is closely related to distance-weighted

regression and also to artificial neural networks is learning with radial basis functions.

• The learned hypothesis is a function of the form

Radial Basis Function Networks

CS464 Introduction to Machine Learning 11

Each hidden unit produces an activation

determined by a Gaussian function

centered at some instance xu.

Therefore, its activation will be close to

zero unless the input x is near xu.

The output unit produces a linear

combination of the hidden unit

activations.

Case-based reasoning

CS464 Introduction to Machine Learning 12

• Instance-based methods

– lazy

– classification based on classifications of near (similar) instances

– data: points in n-dim. space

• Case-based reasoning

– as above, but data represented in symbolic form

• New distance metrics required

Lazy & eager learning

CS464 Introduction to Machine Learning 13

• Lazy: generalize at query time

– kNN, CBR

• Eager: generalize before seeing query

– Radial basis, ID3, …

• Difference

– eager must create global approximation

– lazy can create many local approximation

– lazy can represent more complex functions using same H (H = linear

functions)

Genetic Algorithms

Machine Learning: Lecture 12

(Based on Chapter 9 of Mitchell, T.,

Machine Learning, 1997)

1

Overview of Genetic Algorithms (GAs)

 GA is a learning method motivated by

analogy to biological evolution.

 GAs search the hypothesis space by

generating successor hypotheses which

repeatedly mutate and recombine parts of

the best currently known hypotheses.

 In Genetic Programming (GP), entire

computer programs are evolved to certain

fitness criteria.

2

General Operation of GAs
 Initialize Population: generate p hypotheses at random.

 Evaluate: for each p, compute fitness(p)

 While Maxh Fitness(h) < Threshold do

 Select: probabilistically select a fraction of the best p’s in P. Call

this new generation PNew

 Crossover: probabilistically form pairs of the selected p’s and

produce two offsprings by applying the crossover operator. Add all

offsprings to Pnew.

 Mutate: Choose m% of PNew with uniform probability. For each,

invert one randomly selected bit in its representation.

 Update: P <- Pnew

 Evaluate: for each p in P, compute fitness(p)

 Return the hypothesis from P that has the highest fitness.
3

Representing Hypotheses

 In GAs, hypotheses are often represented by bit
strings so that they can be easily manipulated by
genetic operators such as mutation and crossover.

 Examples:

(Outlook = Overcast v Rain) ^ (Wind = Strong)
<=> 011 10

IF Wind = Strong THEN PlayTennis = yes
<=> 111 10 10

where group 1 = 3-valued outlook,
group 2 = 2-valued Wind
group 3 = 2-valued PlayTennis

4

Genetic Operators
 Crossover Techniques:

 Single-point Crossover.

Mask example: 11111000000

 Two-point Crossover.

Mask example: 00111110000

 Uniform Crossover.

Mask example: 10011010011

 Mutation Techniques:

 Point Mutation

 Other Operators:

 Specialization Operator

 Generalization Operator

5

j=1

Fitness Function and Selection

 A simple measure for modeling the probability that a

hypothesis will be selected is given by the fitness

proportionate selection (or roulette wheel selection):

Pr(hi)= Fitness(hi)/ p Fitness(hj)

 Other methods: Tournament Selection and Rank

Selection.

 In classification tasks, the Fitness function typically

has a component that scores the classification

accuracy over a set of provided training examples.

Other criteria can be added (e.g., complexity or

generality of the rule)

6

Hypothesis Space Search (I)

 GA search can move very abruptly (as compared to
Backpropagation, for example), replacing a parent
hypothesis by an offspring that may be radically different
from the parent.

 The problem of Crowding: when one individual is more fit
than others, this individual and closely related ones will
take up a large fraction of the population.

 Solutions:
 Use tournament or rank selection instead of roulette

selection.
 Fitness sharing
 restrict ion on the kinds of individuals allowed to

recombine to form offsprings.

7

Hypothesis Space Search (II):

The Schema Theorem [Holland, 75]

 Definition: A schema is any string composed of

0s, 1s and *s where * means ‘don’t care’.

 Example: schema 0*10 represents strings 0010

and 0110.

 The Schema Theorem: More fit schemas will

tend to grow in influence, especially schemas

containing a small number of defined bits (i.e.,

containing a large number of *s), and especially

when these defined bits are near one another

within the bit string.
8

Genetic Programming:

Representing Programs

 Example: sin(x)+sqrt(x2+y)

9

Genetic Programming: Crossover

Operation
 Example:

10

Models of Evolution and Learning I:

Lamarckian Evolution [Late 19th C]

 Proposition: Experiences of a single organism

directly affect the genetic makeup of their

offsprings.

 Assessment: This proposition is wrong: the

genetic makeup of an individual is unaffected by

the lifetime experience of one’s biological parents.

 However: Lamarckian processes can sometimes

improve the effectiveness of computerized genetic

algorithms.

11

Models of Evolution and Learning II:
Baldwin Effect [1896]

 If a species is evolving in a changing environment, there
will be evolutionary pressure to favor individuals with the
capability to learn during their lifetime.

 Those individuals who are able to learn many traits will
rely less strongly on their genetic code to “hard-wire”
traits. As a result, these individuals can support a more
diverse gene pool, relying on individual learning of the
“missing” or “sub-optimized” traits in the genetic code.
This more diverse gene pool can, in turn, support more
rapid evolutionary adaptation. Thus the capability of
learning can accelerate the rate of evolutionary adaptation
of a population.

12

Parallelizing Genetic Algorithms

 GAs are naturally suited to parallel implementation.

Different approaches were tried:

 Coarse Grain: subdivides the population into distinct

groups of individuals (demes) and conducts a GA search

in each deme. Transfer between demes occurs (though

infrequently) by a migration process in which individuals

from one deme are copied or transferred to other demes

 Fine Grain: One processor is assigned per individual in

the population and recombination takes place among

neighboring individuals.

13

Machine Learning

Chapter 10. Learning Sets of Rules

Tom M. Mitchell

2

Learning Disjunctive Sets of

Rules

 Method 1: Learn decision tree, convert to
rules

 Method 2: Sequential covering algorithm:

1. Learn one rule with high accuracy, any
coverage

2. Remove positive examples covered by this
rule

3. Repeat

3

Sequential Covering Algorithm

SEQUENTIAL-

COVERING (Target attribute; Attributes; Examples; Threshold)

 Learned rules {}

 Rule LEARN-ONE-
RULE(Target_attribute, Attributes, Examples)

 while PERFORMANCE (Rule, Examples)

> Threshold, do

– Learned_rules Learned_rules + Rule

– Examples Examples – {examples correctly classified by Rule}

– Rule LEARN-ONE-
RULE (Target_attribute, Attributes, Examples)

– Learned_rules sort Learned_rules accord to
PERFORMANCE over Examples

– return Learned_rules

4

Learn-One-Rule

5

 Pos positive Examples

 Neg negative Examples

 while Pos, do
Learn a NewRule

- NewRule most general rule possible
- NewRule Neg
- while NewRuleNeg, do

Add a new literal to specialize NewRule

1. Candidate literals generate candidates

2. Best_literal argmaxLCandidate literals

Performance(SpecializeRule(NewRule; L))

3. add Best_literal to NewRule preconditions

4. NewRuleNeg subset of NewRuleNeg

that satisfies NewRule preconditions

- Learned_rules Learned_rules + NewRule

- Pos Pos – {members of Pos coverd by NewRule}

 Return Learned_rules

Learn-One-Rule(Cont.)

6

Subtleties: Learn One Rule

1. May use beam search

2. Easily generalizes to multi-valued target functions

3. Choose evaluation function to guide search:

– Entropy (i.e., information gain)

– Sample accuracy:

where nc = correct rule predictions, n = all predictions

 m estimate:

7

Variants of Rule Learning Programs

 Sequential or simultaneous covering of data?

 General specific, or specific general?

 Generate-and-test, or example-driven?

 Whether and how to post-prune?

 What statistical evaluation function?

8

Learning First Order Rules

Why do that?

 Can learn sets of rules such as

Ancestor(x, y) Parent(x; y)

Ancestor(x; y) Parent(x; z) ^ Ancestor(z;

y)

 General purpose programming language

PROLOG : programs are sets of such rules

9

First Order Rule for Classifying Web

Pages

[Slattery, 1997]

course(A)

has-word(A, instructor),

Not has-word(A, good),

link-from(A, B),

has-word(B, assign),

Not link-from(B, C)

Train: 31/31, Test: 31/34

10

Specializing Rules in FOIL

11

Information Gain in FOIL

12

13

Induction as Inverted Deduction

Induction as Inverted Deduction(Cont’)

14

Induction as Inverted Deduction(Cont’)

15

Induction is, in fact, the inverse operation of deduction, and
cannot be conceived to exist without the corresponding
operation, so that the question of relative importance cannot
arise. Who thinks of asking whether addition or subtraction is
the more important process in arithmetic? But at the same
time much difference in difficulty may exist between a direct
and inverse operation; : : : it must be allowed that inductive
investigations are of a far higher degree of difficulty and
complexity than any questions of deduction….

(Jevons 1874)

Induction as Inverted Deduction(Cont’)

16

Induction as Inverted Deduction(Cont’)

17

Induction as Inverted Deduction(Cont’)

18

19

Deduction: Resolution Rule

20

Inverting Resolution

21

Inverted Resolution

(Propositional)

22

First order resolution

23

Inverting First order resolution

Cigol

24

Progol

25

Machine Learning

Chapter 13. Reinforcement

Learning

Tom M. Mitchell

2

Control Learning

Consider learning to choose actions, e.g.,

 Robot learning to dock on battery charger

 Learning to choose actions to optimize factory output

 Learning to play Backgammon

Note several problem characteristics:

 Delayed reward

 Opportunity for active exploration

 Possibility that state only partially observable

 Possible need to learn multiple tasks with same
sensors/effectors

3

One Example: TD-Gammon

Learn to play Backgammon

Immediate reward

 +100 if win

 -100 if lose

 0 for all other states

Trained by playing 1.5 million games against itself

Now approximately equal to best human player

4

Reinforcement Learning Problem

5

Markov Decision Processes

Assume

 finite set of states S

 set of actions A

 at each discrete time agent observes state st S and

chooses action at A

 then receives immediate reward rt

 and state changes to st+1

 Markov assumption : st+1 = (st, at) and rt = r(st, at)
– i.e., rt and st+1 depend only on current state and action

– functions and r may be nondeterministic

– functions and r not necessarily known to agent

6

Agent's Learning Task

7

Value Function

8

9

What to Learn

10

Q Function

11

Training Rule to Learn Q

12

Q Learning for Deterministic

Worlds

13

14

15

Nondeterministic Case

16

Nondeterministic Case(Cont’)

17

Temporal Difference Learning

18

Learning(Cont’)

Temporal Difference

19

Subtleties and Ongoing Research

