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Prerequisites 
 

For Machine Learning Course we recommend that students meet the following 
prerequisites: 

• Basic programming skills (in Python) 

• Algorithm design 

• Basics of probability & statistics 
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Machine Learning 
Introduction 

Ever since computers were invented, we have wondered whether they might be 
made to learn. If we could understand how to program them to learn-to improve 
automatically with experience-the impact would be dramatic. 

• Imagine computers learning from medical records which treatments are most 
effective for new diseases 

• Houses learning from experience to optimize energy costs based on the particular 
usage patterns of their occupants. 

• Personal software assistants learning the evolving interests of their users in order 
to highlight especially relevant stories from the online morning newspaper 
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Examples of Successful Applications of 
Machine Learning 

 
• Learning to recognize spoken words 

• Learning to drive an autonomous vehicle 

• Learning to classify new astronomical structures 

• Learning to play world-class backgammon 
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Why is Machine Learning Important? 
 

• Some tasks cannot be defined well, except by examples (e.g., recognizing 
people). 

• Relationships and correlations can be hidden within large amounts of data. 
Machine Learning/Data Mining may be able to find these relationships. 

• Human designers often produce machines that do not work as well as desired 
in the environments in which they are used. 

• The amount of knowledge available about certain tasks might be too large for 
explicit encoding by humans (e.g., medical diagnostic). 

• Environments change over time. 

• New knowledge about tasks is constantly being discovered by humans. It may 
be difficult to continuously re-design systems “by hand”. 
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Areas of Influence for Machine Learning 
 

• Statistics: How best to use samples drawn from unknown probability distributions to 

help decide from which distribution some new sample is drawn? 

• Brain Models: Non-linear elements with weighted inputs (Artificial Neural 

Networks) have been suggested as simple models of biological neurons. 

• Adaptive Control Theory: How to deal with controlling a process having unknown 

parameters that must be estimated during operation? 

• Psychology: How to model human performance on various learning tasks? 

• Artificial Intelligence: How to write algorithms to acquire the knowledge humans are 

able to acquire, at least, as well as humans? 

• Evolutionary Models: How to model certain aspects of biological evolution to 

improve the performance of computer programs? 
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Machine Learning: A Definition 
 

A computer program is said to learn from experience E 
with respect to some class of tasks T and performance 
measure P, if its performance at tasks in T, as measured 
by P, improves with experience E. 
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Why “Learn”? 
 

Learning is used when: 

• Human expertise does not exist (navigating on Mars) 

• Humans are unable to explain their expertise (speech recognition) 

• Solution changes in time (routing on a computer network) 

• Solution needs to be adapted to particular cases (user biometrics) 
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Well-Posed Learning Problem 

Definition: A computer program is said to learn from experience E with respect to 

some class of tasks T and performance measure P, if its performance at tasks in T, 

as measured by P, improves with experience E. 

 
To have a well-defined learning problem, three features needs to be identified: 

1. The class of tasks 

2. The measure of performance to be improved 

3. The source of experience 
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Checkers Game 
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Game Basics 

• Checkers is played by two players. Each player begins the game with 12 colored 

discs. (One set of pieces is black and the other red.) Each player places his or her 

pieces on the 12 dark squares closest to him or her. Black moves first. Players 

then alternate moves. 

• The board consists of 64 squares, alternating between 32 dark and 32 light 

squares. 

• It is positioned so that each player has a light square on the right side corner 

closest to him or her. 

• A player wins the game when the opponent cannot make a move. In most cases, 

this is because all of the opponent's pieces have been captured, but it could also 

be because all of his pieces are blocked in. 
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Rules of the Game 

• Moves are allowed only on the dark squares, so pieces always move diagonally. 

Single pieces are always limited to forward moves (toward the opponent). 

• A piece making a non-capturing move (not involving a jump) may move only 

one square. 

• A piece making a capturing move (a jump) leaps over one of the opponent's 

pieces, landing in a straight diagonal line on the other side. Only one piece may 

be captured in a single jump; however, multiple jumps are allowed during a 

single turn. 

• When a piece is captured, it is removed from the board. 

• If a player is able to make a capture, there is no option; the jump must be made. 

• If more than one capture is available, the player is free to choose whichever he or 

she prefers. 
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Rules of the Game Cont. 

• When a piece reaches the furthest row from the player who controls that piece, it 

is crowned and becomes a king. One of the pieces which had been captured is 

placed on top of the king so that it is twice as high as a single piece. 

• Kings are limited to moving diagonally but may move both forward and 

backward. (Remember that single pieces, i.e. non-kings, are always limited to 

forward moves.) 

• Kings may combine jumps in several directions, forward and backward, on the 

same turn. Single pieces may shift direction diagonally during a multiple capture 

turn, but must always jump forward (toward the opponent). 
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Well-Defined Learning Problem 

Acheckers learning problem: 

 Task T: playing checkers 

 Performance measure P: percent of games won against opponents 

 Training experience E: playing practice games against itself 

 
Ahandwriting recognition learning problem: 

 Task T: recognizing and classifying handwritten words within images 

 Performance measure P: percent of words correctly classified 

 Training experience E: a database of handwritten words with given 

classifications 
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Arobot driving learning problem: 

 Task T: driving on public four-lane highways using vision sensors 

 Performance measure P: average distance travelled before an error (as judged by 

human overseer) 

 Training experience E: a sequence of images and steering commands recorded 

while observing a human driver 
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Designing a Learning System 
 

1. Choosing the Training Experience 

2. Choosing the Target Function 

3. Choosing a Representation for the Target Function 

4. Choosing a Function Approximation Algorithm 

1. Estimating training values 

2. Adjusting the weights 

5. The Final Design 
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The basic design issues and approaches to machine 
learning is illustrated by considering designing a 
program to learn to play checkers, with the goal of 
entering it in the world checkers tournament 
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1. Choosing the Training Experience 

• The first design choice is to choose the type of training experience from which 

the system will learn. 

• The type of training experience available can have a significant impact on 

success or failure of the learner. 

 
There are three attributes which impact on success or failure of the learner 

 
1. Whether the training experience provides direct or indirect feedback regarding 

the choices made by the performance system. 

2. The degree to which the learner controls the sequence of training examples 

3. How well it represents the distribution of examples over which the final system 

performance P must be measured. 
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1. Whether the training experience provides direct or indirect feedback regarding 

the choices made by the performance system. 

For example, in checkers game: 

• In learning to play checkers, the system might learn from direct training examples consisting of individual 

checkers board states and the correct move for each. 

 
• Indirect training examples consisting of the move sequences and final outcomes of various games played. 

 
• The information about the correctness of specific moves early in the game must be inferred indirectly from 

the fact that the game was eventually won or lost. 

 
• Here the learner faces an additional problem of credit assignment, or determining the degree to which each 

move in the sequence deserves credit or blame for the final outcome. 

 
• Credit assignment can be a particularly difficult problem because the game can be lost even when early 

moves are optimal, if these are followed later by poor moves. 

 
• Hence, learning from direct training feedback is typically easier than learning from indirect feedback. 
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2. A second important attribute of the training experience is the degree to which the 

learner controls the sequence of training examples 

For example, in checkers game: 

• The learner might depends on the teacher to select informative board states and to provide the correct move 

for each. 

 
• Alternatively, the learner might itself propose board states that it finds particularly confusing and ask the 

teacher for the correct move. 

 
• The learner may have complete control over both the board states and (indirect) training classifications, as it 

does when it learns by playing against itself with no teacher present. 

 
• Notice in this last case the learner may choose between experimenting with novel board states that it has not 

yet considered, or honing its skill by playing minor variations of lines of play it currently finds most 

promising. 
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3. A third attribute of the training experience is how well it represents the 

distribution of examples over which the final system performance P must be 

measured. 

Learning is most reliable when the training examples follow a distribution similar to that of future test 

examples. 

 
For example, in checkers game: 

• In checkers learning scenario, the performance metric P is the percent of games the system wins in the world 

tournament. 

 
• If its training experience E consists only of games played against itself, there is an danger that this training 

experience might not be fully representative of the distribution of situations over which it will later be tested. 

For example, the learner might never encounter certain crucial board states that are very likely to be played 

by the human checkers champion. 

 
• It is necessary to learn from a distribution of examples that is somewhat different from those on which the 

final system will be evaluated. Such situations are problematic because mastery of one distribution of 

examples will not necessary lead to strong performance over some other distribution. 
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2. Choosing the Target Function 

The next design choice is to determine exactly what type of knowledge will be 

learned and how this will be used by the performance program. 

• Lets begin with a checkers-playing program that can generate the legal moves 

from any board state. 

• The program needs only to learn how to choose the best move from among these 

legal moves. This learning task is representative of a large class of tasks for 

which the legal moves that define some large search space are known a priori, but 

for which the best search strategy is not known. 
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Given this setting where we must learn to choose among the legal moves, the most 

obvious choice for the type of information to be learned is a program, or function, 

that chooses the best move for any given board state. 

 
1. Let ChooseMove be the target function and the notation is 

ChooseMove : B M 

which indicate that this function accepts as input any board from the set of legal 

board states B and produces as output some move from the set of legal moves M. 

 
ChooseMove is an choice for the target function in checkers example, but this 

function will turn out to be very difficult to learn given the kind of indirect training 

experience available to our system 
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2. An alternative target function is an evaluation function that assigns a numerical 

score to any given board state 

Let the target function V and the notation 

V : B R 

which denote that V maps any legal board state from the set B to some real value 

 
We intend for this target function V to assign higher scores to better board states. If 

the system can successfully learn such a target function V, then it can easily use it to 

select the best move from any current board position. 
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Let us define the target value V(b) for an arbitrary board state b in B, as follows: 

1. if b is a final board state that is won, then V(b) = 100 

2. if b is a final board state that is lost, then V(b) = -100 

3. if b is a final board state that is drawn, then V(b) = 0 

4. if b is a not a final state in the game, then V(b) = V(b' ), 

where b' is the best final board state that can be achieved starting from b and 

playing optimally until the end of the game 
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3. Choosing a Representation for the 
Target Function 

let us choose a simple representation - for any given board state, the function c will 

be calculated as a linear combination of the following board features: 

 
xl: the number of black pieces on the board 

x2: the number of red pieces on the board 

x3: the number of black kings on the board 

x4: the number of red kings on the board 

x5: the number of black pieces threatened by red (i.e., which can be 

captured on red's next turn) 

x6: the number of red pieces threatened by black 
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Thus, learning program will represent as a linear function of the form 
 
 

Where, 

• w0 through w6 are numerical coefficients, or weights, to be chosen by the 

learning algorithm. 

• Learned values for the weights w1 through w6 will determine the relative 

importance of the various board features in determining the value of the board 

• The weight w0 will provide an additive constant to the board value 
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Partial design of a checkers learning program: 

 
• Task T: playing checkers 

• Performance measure P: percent of games won in the world tournament 

• Training experience E: games played against itself 

• Target function: V: Board R 

• Target function representation 
 
 

 
The first three items above correspond to the specification of the learning task, 

whereas the final two items constitute design choices for the implementation of the 

learning program. 
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4. Choosing a Function Approximation 
Algorithm 

• In order to learn the target function f we require a set of training examples, each 

describing a specific board state b and the training value Vtrain(b) for b. 

 
• Each training example is an ordered pair of the form (b, Vtrain(b)). 

 
• For instance, the following training example d escribes a board state b in 

which black has won the game (note x2 = 0 indicates that red has no remaining 

pieces) and for which the target function value Vtrain(b) is therefore +100. 

 
((x1=3, x2=0, x3=1, x4=0, x5=0, x6=0), +100) 
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Function Approximation Procedure 

1. Derive training examples from the indirect training experience available to the 

learner 

2. Adjusts the weights wi to best fit these training examples 



1. Estimating training values 
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A simple approach for estimating training values for intermediate board states is to 

assign the training value of Vtrain(b) for any intermediate board state b to be 

V(̂ Successor(b)) 

 
Where , 

V̂ is the learner's current approximation to V 

Successor(b) denotes the next board state following b for which it is again the 

program's turn to move 

 
Rule for estimating training values 

 
Vtrain(b) ← V̂ (Successor(b)) 



2. Adjusting the weights 
 

 

 

 

Specify the learning algorithm for choosing the weights wi to best fit the set of 

training examples {(b, Vtrain(b))} 

 
A first step is to define what we mean by the bestfit to the training data. 

• One common approach is to define the best hypothesis, or set of weights, as that 

which minimizes the squared error E between the training values and the values 

predicted by the hypothesis. 
 

 

• Several algorithms are known for finding weights of a linear function that 

minimize E. 



Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 36 

 

 

In our case, we require an algorithm that will incrementally refine the weights as 

new training examples become available and that will be robust to errors in these 

estimated training values 

 
One such algorithm is called the least mean squares, or LMS training rule. For 

each observed training example it adjusts the weights a small amount in the 

direction that reduces the error on this training example 

 
LMS weight update rule :- For each training example (b, Vtrain(b)) 

Use the current weights to calculate V̂ (b) 
For each weight wi, update it as 

 
wi ← wi + ƞ (Vtrain (b) - V ̂(b)) xi 
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Here ƞ is a small constant (e.g., 0.1) that moderates the size of the weight update. 

Working of weight update rule 

• When the error (Vtrain(b)- V̂(b)) is zero, no weights are changed. 

• When (Vtrain(b) - V̂(b)) is positive (i.e., when V ̂(b) is too low), then each weight 

is increased in proportion to the value of its corresponding feature. This will 

raise the value of V ̂(b), reducing the error. 

• If the value of some feature xi is zero, then its weight is not altered regardless of 

the error, so that the only weights updated are those whose features actually 

occur on the training example board. 



 

 

5. The Final Design 

The final design of checkers learning system can be described by four distinct 

program modules that represent the central components in many learning systems 
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1. The Performance System is the module that must solve the given performance 

task by using the learned target function(s). 

It takes an instance of a new problem (new game) as input and produces a trace of 

its solution (game history) as output. 

In checkers game, the strategy used by the Performance System to select its next 

move at each step is determined by the learned V̂ evaluation function. Therefore, we 

expect its performance to improve as this evaluation function becomes increasingly 

accurate. 

 
2. The Critic takes as input the history or trace of the game and produces as output 

a set of training examples of the target function. As shown in the diagram, each 

training example in this case corresponds to some game state in the trace, along 

with an estimate Vtrain of the target function value for this example. 
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3. The Generalizer takes as input the training examples and produces an output 

hypothesis that is its estimate of the target function. 

It generalizes from the specific training examples, hypothesizing a general function 

that covers these examples and other cases beyond the training examples. 

In our example, the Generalizer corresponds to the LMS algorithm, and the output 

hypothesis is the function V̂ described by the learned weights w0, . . . , W6. 

 
4. The Experiment Generator takes as input the current hypothesis and outputs a 

new problem (i.e., initial board state) for the Performance System to explore. Its 

role is to pick new practice problems that will maximize the learning rate of the 

overall system. 

In our example, the Experiment Generator always proposes the same initial game 

board to begin a new game. 



 

 

The sequence of design choices made for the checkers program is summarized in 

below figure 
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Perspectives of Machine Learning 
 
 

Perspective of machine learning involves searching very 

large space of possible hypothesis to determine one that best fits 

the observed data and any prior knowledge held by learner. 
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Issues in Machine Learning 

• What algorithms exist for learning general target functions from specific training 

examples? In what settings will particular algorithms converge to the desired 

function, given sufficient training data? Which algorithms perform best for 

which types of problems and representations? 

 
• How much training data is sufficient? What general bounds can be found to 

relate the confidence in learned hypotheses to the amount of training experience 

and the character of the learner's hypothesis space? 

 
• When and how can prior knowledge held by the learner guide the process of 

generalizing from examples? Can prior knowledge be helpful even when it is 

only approximately correct? 
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• What is the best strategy for choosing a useful next training experience, and how 

does the choice of this strategy alter the complexity of the learning problem? 

 
• What is the best way to reduce the learning task to one or more function 

approximation problems? Put another way, what specific functions should the 

system attempt to learn? Can this process itself be automated? 

 
• How can the learner automatically alter its representation to improve its ability to 

represent and learn the target function? 
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Concept Learning 
 

• Learning involves acquiring general concepts from specific training examples. 
Example: People continually learn general concepts or categories such as "bird," 
"car," "situations in which I should study more in order to pass the exam," etc. 

• Each such concept can be viewed as describing some subset of objects or events 
defined over a larger set 

• Alternatively, each concept can be thought of as a Boolean-valued function 
defined over this larger set. (Example: A function defined over all animals, whose 
value is true for birds and false for other animals). 

 

Concept learning - Inferring a Boolean-valued function from training examples of 
its input and output 



 

 

A Concept Learning Task 

Consider the example task of learning the target concept 

 
"Days on which my friend Aldo enjoys his favorite water sport." 

 

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport 

 

1 Sunny Warm Normal Strong Warm Same Yes 

 
2 Sunny Warm High Strong Warm Same Yes 

 
3 Rainy Cold High Strong Warm Change No 

 
4 Sunny Warm High Strong Cool Change Yes 

Table- Describes a set ofDeeexpaak Dm, Apsstl. eProdf., aDeypts. o,f CeSEa, cCahnarareEnpggr. Ceoslleegented by a set of attributes 47 
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The attribute EnjoySport indicates whether or not a Person enjoys his favorite 

water sport on this day. 

 

 
 

The task is to learn to predict the value of EnjoySport 

for an arbitrary day, based on the values of its other 

attributes ? 
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What hypothesis representation is provided to the learner? 

 
Let’s consider a simple representation in which each hypothesis consists of a 

conjunction of constraints on the instance attributes. 

 
Let each hypothesis be a vector of six constraints, specifying the values of the six 

attributes Sky, AirTemp, Humidity, Wind, Water, and Forecast. 

 
For each attribute, the hypothesis will either 

• Indicate by a "?' that any value is acceptable for this attribute, 
• Specify a single required value (e.g., Warm) for the attribute, or 

• Indicate by a "Φ" that no value is acceptable 
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If some instance x satisfies all the constraints of hypothesis h, then h classifies 

x as a positive example (h(x) = 1). 

 
The hypothesis that PERSON enjoys his favorite sport only on cold days with high 

humidity (independent of the values of the other attributes) is represented by the 

expression 

(?, Cold, High, ?, ?, ?) 

 
The most general hypothesis-that every day is a positive example-is represented by 

(?, ?, ?, ?, ?, ?) 
 

 

The most specific possible hypothesis-that no 

represented by 

day is a positive example-is 

(Φ , Φ, Φ, Φ, Φ, Φ) 
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Notation 

The set of items over which the concept is defined is called the set of instances, 

which we denote by X. 

Example: X is the set of all possible days, each represented by the attributes: Sky, 

AirTemp, Humidity, Wind, Water, and Forecast 

 
The concept or function to be learned is called the target concept, which we denote 

by c. 

c can be any Boolean valued function defined over the instances X 

c : X {O, 1} 

 
Example: The target concept corresponds to the value of the attribute EnjoySport 

(i.e., c(x) = 1 if EnjoySport = Yes, and c(x) = 0 if EnjoySport = No). 
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• Instances for which c(x) = 1 are called positive examples, or members of the 

target concept. 

• Instances for which c(x) = 0 are called negative examples, or non-members of 

the target concept. 

• The ordered pair (x, c(x)) to describe the training example consisting of the 

instance x and its target concept value c(x). 

• D to denote the set of available training examples 

• The symbol H to denote the set of all possible hypotheses that the learner may 

consider regarding the identity of the target concept. Each hypothesis h in H 

represents a Boolean-valued function defined over X 

h : X {O, 1} 

 
• The goal of the learner is to find a hypothesis h such that h(x) = c(x) for all x in 

X. 
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Example Sky AirTemp Humidity Wind Water Forecast EnjoySport 

 

1 Sunny Warm Normal Strong Warm Same Yes 

 
2 Sunny Warm High Strong Warm Same Yes 

 
3 Rainy Cold High Strong Warm Change No 

 
4 Sunny Warm High Strong Cool Change Yes 
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The Inductive Learning Hypothesis 
 

 
Any hypothesis found to approximate the target function well over a sufficiently 

large set of training examples will also approximate the target function well over 

other unobserved examples. 



 

 

Concept learning as Search 

• Concept learning can be viewed as the task of searching through a large space of 

hypotheses implicitly defined by the hypothesis representation. 

• The goal of this search is to find the hypothesis that best fits the training 

examples. 

 
Example, the instances X and hypotheses H in the EnjoySport learning task. 

The attribute Sky has three possible values, and AirTemp, Humidity, Wind, Water 

Forecast each have two possible values, the instance space X contains exactly 

• 3.2.2.2.2.2 = 96 Distinct instances 

• 5.4.4.4.4.4 = 5120 Syntactically distinct hypotheses within H. 

Every hypothesis containing one or more " Φ" symbols represents the empty set of 

instances; that is, it classifies every instance as negative. 

• 1 + (4.3.3.3.3.3) = 973. SeDemepaaknD,tAiscsta.  Plrolfy.,Dedpti.softCiSnE,cCatnahrayEnpggo.Ctohlleegeses  56 
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• Consider the two hypotheses 

h1 = (Sunny, ?, ?, Strong, ?, ?) 

h2 = (Sunny, ?, ?, ?, ?, ?) 

 
• Consider the sets of instances that are classified positive by hl and by h2. 

• h2 imposes fewer constraints on the instance, it classifies more instances as 

positive. So, any instance classified positive by hl will also be classified positive 

by h2. Therefore, h2 is more general than hl. 



General-to-Specific Ordering of Hypotheses 
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• Given hypotheses hj and hk, hj is more-general-than or- equal do hk if and only if 

any instance that satisfies hk also satisfies hi 

 
Definition: Let hj and hk be Boolean-valued functions defined over X. Then hj is 

more general-than-or-equal-to hk (written hj ≥ hk) if and only if 
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• In the figure, the box on the left 

represents the set X of all 

instances, the box on the right the 

set H of all hypotheses. 

 
• Each hypothesis corresponds to 

some subset of X-the subset of 

instances that it classifies positive. 

 
• The arrows connecting hypotheses 

represent the more - general -than 

relation, with the arrow pointing 

toward the less general hypothesis. 

 
• Note the subset of instances 

characterized by h2 subsumes the 

subset characterized by h l , hence 

h2 is more - general– than h1 
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FIND-S: Finding a Maximally Specific 
Hypothesis 

 

FIND-S Algorithm 

1. Initialize h to the most specific hypothesis in H 

2. For each positive training instance x 

For each attribute constraint ai in h 

If the constraint ai is satisfied by x 

Then do nothing 

Else replace ai in h by the next more general constraint that is satisfied by x 

3. Output hypothesis h 
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To illustrate this algorithm, assume the learner is given the sequence of training 
examples from the EnjoySport task 

 

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport 

1 Sunny Warm Normal Strong Warm Same Yes 

2 Sunny Warm High Strong Warm Same Yes 

3 Rainy Cold High Strong Warm Change No 

4 Sunny Warm High Strong Cool Change Yes 

The first step of FIND-S is to initialize h to the most specific hypothesis in H 

h - (Ø, Ø, Ø, Ø, Ø, Ø) 
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x1 = <Sunny Warm Normal Strong Warm Same>, + 

Observing the first training example, it is clear that our hypothesis is too specific. In 
particular, none of the "Ø" constraints in h are satisfied by this example, so each is 
replaced by the next more general constraint that fits the example 

h1 = <Sunny Warm Normal Strong Warm Same> 

This h is still very specific; it asserts that all instances are negative except for the 
single positive training example 

 

x2 = <Sunny, Warm, High, Strong, Warm, Same>, + 

The second training example forces the algorithm to further generalize h, this time 
substituting a "?' in place of any attribute value in h that is not satisfied by the new 
example 

h2 = <Sunny Warm ? Strong Warm Same> 
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x3 = <Rainy, Cold, High, Strong, Warm, Change>, - 

Upon encountering the third training the algorithm makes no change to h. The 
FIND-S algorithm simply ignores every negative example. 

h3 = < Sunny Warm ? Strong Warm Same> 

 

x4 = <Sunny Warm High Strong Cool Change>, + 

The fourth example leads to a further generalization of h 

h4 = < Sunny Warm ? Strong ? ? > 
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The key property of the FIND-S algorithm is 

• FIND-S is guaranteed to output the most specific hypothesis within H that is 
consistent with the positive training examples 

• FIND-S algorithm’s final hypothesis will also be consistent with the negative 
examples provided the correct target concept is contained in H, and provided the 
training examples are correct. 
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Unanswered by FIND- S 
 

1. Has the learner converged to the correct target concept? 

2. Why prefer the most specific hypothesis? 

3. Are the training examples consistent? 

4. What if there are several maximally specific consistent hypotheses? 
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Version Space and CANDIDATE 
ELIMINATION Algorithm 

The key idea in the CANDIDATE-ELIMINATION algorithm is to output a description of 
the set of all hypotheses consistent with the training examples 

 
Representation 

• Definition: A hypothesis h is consistent with a set of training examples D if and only if 
h(x) = c(x) for each example (x, c(x)) in D. 

Consistent(h, D)  ( x, c(x)  D) h(x) = c(x)) 

 
Note difference between definitions of consistent and satisfies 

• an example x is said to satisfy hypothesis h when h(x) = 1, regardless of whether x is a positive or 
negative example of the target concept. 

• an example x is said to consistent with hypothesis h iff h(x) = c(x) 
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Version Space 

 
A representation of the set of all hypotheses which are consistent with D 

 

Definition: The version space, denoted VSH,D with respect to hypothesis space H 
and training examples D, is the subset of hypotheses from H consistent with the 
training examples in D 

VSH,D {h  H | Consistent(h, D)} 
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The LIST-THEN-ELIMINATE Algorithm 
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The LIST-THEN-ELIMINATE algorithm first initializes the version space to contain 
all hypotheses in H and then eliminates any hypothesis found inconsistent with any 
training example. 



The LIST-THEN-ELIMINATE Algorithm 
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1. VersionSpace c a list containing every hypothesis in H 

2. For each training example, (x, c(x)) 

remove from VersionSpace any hypothesis h for which h(x) ≠ c(x) 

3. Output the list of hypotheses in VersionSpace 
 

The LIST-THEN-ELIMINATE Algorithm 

 

 

• List-Then-Eliminate works in principle, so long as version space is finite. 

• However, since it requires exhaustive enumeration of all hypotheses in practice it is 
not feasible. 



A More Compact Representation for Version Spaces 
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• The version space is represented by its most general and least general members. 

• These members form general and specific boundary sets that delimit the version 
space within the partially ordered hypothesis space. 
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• A version space with its 

general and specific boundary 

sets. 

• The version space includes all 

six hypotheses shown here, but 

can be represented more 

simply by S and G. 

• Arrows indicate instance of the 

more-general-than  relation. 

This is the version space for 

the Enjoysport concept 

learning 

• problem and training 
examples described in below 

table Example Sky AirTemp Humidity Wind Water Forecast EnjoySport 

1 Sunny Warm Normal Strong Warm Same Yes 

2 Sunny Warm High Strong Warm Same Yes 

3 Rainy Cold High Strong Warm Change No 

4 Sunny Warm High 
Deepak 

Strong 
D, Asst. Prof 

Cool 
., Dept. of C 

Change 
SE, Canara Engg. 

Yes 
College 

 



Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 73 

 

 

Definition: The general boundary G, with respect to hypothesis space H and 
training data D, is the set of maximally general members of H consistent with D 

G {g  H | Consistent(g, D)(g'  H)[(g' g g)  Consistent(g', D)]} 

 

 

Definition: The specific boundary S, with respect to hypothesis space H and 
training data D, is the set of minimally general (i.e., maximally specific) members of 
H consistent with D. 

S {s  H | Consistent(s, D)(s'  H)[(s gs')  Consistent(s', D)]} 
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Version Space representation theorem 

 
Theorem: Let X be an arbitrary set of instances and Let H be a set of Boolean- 

valued hypotheses defined over X. Let c : X →{O, 1} be an arbitrary target concept 

defined over X, and let D be an arbitrary set of training examples {(x, c(x))). For all 

X, H, c, and D such that S and G are well defined, 

 

VSH,D={h  H |(s  S) (g  G) (g g h g s)} 
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To Prove: 

VSH,D={h  H |(s  S) (g  G) (g g h g s)} 

 

1. Every h satisfying the right hand side of the above expression is in VS H,D 

2. Every member of VS H,D satisfies the right-hand side of the expression 

 

Sketch of proof: 

1. let g, h, s be arbitrary members of G, H, S respectively with g g h g s 

By the definition of S, s must be satisfied by all positive examples in D. Because h g s , h must also 

be satisfied by all positive examples in D. 

By the definition of G, g cannot be satisfied by any negative example in D, and because g g h h 
cannot be satisfied by any negative example in D. Because h is satisfied by all positive examples in D 
and by no negative examples in D, h is consistent with D, and therefore h is a member of VSH,D 

 

2. It can be proven by assuming some h in VSH,D,that does not satisfy the right-hand side of the 
expression, then showing that this leads to an inconsistency 
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The CANDIDATE-ELIMINATION Learning Algorithm 

 
The CANDIDATE-ELIMINTION algorithm computes the version space containing 
all hypotheses from H that are consistent with an observed sequence of training 
examples. 
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Initialize G to the set of maximally general hypotheses in H 

Initialize S to the set of maximally specific hypotheses in H 

For each training example d, do 

• If d is a positive example 

• Remove from G any hypothesis inconsistent with d 

• For each hypothesis s in S that is not consistent with d 

• Remove s from S 

• Add to S all minimal generalizations h of s such that 

• h is consistent with d, and some member of G is more general than h 

• Remove from S any hypothesis that is more general than another hypothesis in S 

 

• If d is a negative example 

• Remove from S any hypothesis inconsistent with d 

• For each hypothesis g in G that is not consistent with d 

• Remove g from G 

• Add to G all minimal specializations h of g such that 

• h is consistent with d, and some member of S is more specific than h 

• Remove from G any hypothesis that is less general than another hypothesis in G 
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An Illustrative Example 

The boundary sets are first initialized to Go and So, the most general and most 
specific hypotheses in H. 

 

 

 
 

S0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

G0 ?, ?, ?, ?, ?, ?

, , , , , 
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?, ?, ?, ?, ?, ?

For training example d, 
 

Sunny, Warm, Normal, Strong, Warm, Same  + 
 

 

 

S0 
 

S1 
 
 
 
 
 
 
 
 
 
 
 
 
 

G0, G1 

, , , , . 

Sunny, Warm, Normal, Strong, Warm, Same



For training example d, 
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?, ?, ?, ?, ?, ?

 

Sunny, Warm, High, Strong, Warm, Same + 
 

 

 

S1 
 

S2 
 
 
 
 
 
 
 
 
 
 
 

 

G1, G2 

Sunny, Warm, Normal, Strong, Warm, Same

Sunny, Warm, ?, Strong, Warm, Same



For training example d, 
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Rainy, Cold, High, Strong, Warm, Change  







S2, S3 
 
 
 
 
 
 
 
 
 
 
 

 

G3 
 

G2 ?, ?, ?, ?, ?, ?

Sunny, ?, ?, ?, ?, ? ?, Warm, ?, ?, ?, ? ?, ?, ?, ?, ?, Same

Sunny, Warm, ?, Strong, Warm, Same



For training example d, 
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Sunny, Warm, High, Strong, Cool Change  + 
 

 

 

 

 

S3 
 

 

S4 
 
 
 
 
 
 

G4 
 

G3 Sunny, ?, ?, ?, ?, ? ?, Warm, ?, ?, ?, ? ?, ?, ?, ?, ?, Same

Sunny, Warm, ?, Strong, Warm, Same

Sunny, ?, ?, ?, ?, ? ?, Warm, ?, ?, ?, ?

Sunny, Warm, ?, Strong, ?, ?



 

 

 
 
 
 
 

The final version space for the EnjoySport concept learning problem and training 

examples described earlier. 
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Inductive Bias 

The fundamental questions for inductive inference 

• What if the target concept is not contained in the hypothesis space? 

• Can we avoid this difficulty by using a hypothesis space that includes every possible 

hypothesis? 

• How does the size of this hypothesis space influence the ability of the algorithm to 

generalize to unobserved instances? 

• How does the size of the hypothesis space influence the number of training examples 

that must be observed? 
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Effect of incomplete hypothesis space 

Preceding algorithms work if target function is in H 

Will generally not work if target function not in H 

Consider following examples which represent target function 
“sky = sunny or sky = cloudy”: 

Sunny Warm Normal Strong Cool Change Y 
Cloudy Warm Normal Strong Cool Change Y 

Rainy Warm Normal Strong Cool Change N 
 

If apply Candidate Elimination algorithm as before, end up with empty Version Space 

After first two training example 

S= ? Warm Normal Strong Cool Change

New hypothesis is overly general and it covers the third negative training example! 

Our H does not include the appropriate c 
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Incomplete hypothesis space 

An Unbiased Learner 

• If c not in H, then consider generalizing representation of H to contain c 

• The size of the instance space X of days described by the six available attributes is 96. 
The number of distinct subsets that can be defined over a set X containing |X| elements 
(i.e., the size of the power set of X) is 2|X| 

• Recall that there are 96 instances in EnjoySport; hence there are 296 possible hypotheses 
in full space H 

• Can do this by using full propositional calculus with AND, OR, NOT 

• Hence H defined only by conjunctions of attributes is biased (containing only 973 h’s) 
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• Let us reformulate the Enjoysport learning task in an unbiased way by defining a new 
hypothesis space H' that can represent every subset of instances; that is, let H' correspond 
to the power set of X. 

• One way to define such an H' is to allow arbitrary disjunctions, conjunctions, and 
negations of our earlier hypotheses. 

 

For instance, the target concept "Sky = Sunny or Sky = Cloudy" could then be described as 

(Sunny, ?, ?, ?, ?, ?) V (Cloudy, ?, ?, ?, ?, ?) 
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Definition: 

Consider a concept learning algorithm L for the set of instances X. 

• Let c be an arbitrary concept defined over X 

• Let Dc = {( x , c(x))} be an arbitrary set of training examples of c. 

• Let L(xi, Dc) denote the classification assigned to the instance xi by L after training on the 
data Dc. 

• The inductive bias of L is any minimal set of assertions B such that for any target concept 
c and corresponding training examples Dc 

 
( xi  X ) [(B  Dc  xi) ├ L(xi, Dc)] 
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Modelling inductive systems by 

equivalent deductive systems. 

The input-output behavior of the 

CANDIDATE-ELIMINATION 

algorithm using a hypothesis space H 

is identical to that of a deductive 

theorem prover utilizing the assertion 

"H contains the target concept." This 

assertion is therefore called the 

inductive bias of the CANDIDATE- 

ELIMINATION  algorithm. 

characterizing inductive systems 

by their inductive bias allows 

modelling them by their equivalent 

deductive systems. This provides a 

way  to compare inductive systems 

according to their policies for 

generalizing beyond the observed 

training data. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DECISION TREE LEARNING 
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Decision tree learning is a method for approximating 
discrete-valued target functions, in which the learned 
function is represented by a decision tree. 
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DECISION TREE REPRESENTATION  
 
 
 
 

FIGURE: A 

decision tree for the 

concept PlayTennis. 

An example is 

classified by sorting 

it through the tree to 

the appropriate leaf 

node, then returning 

the classification 

associated with this 

leaf 
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• Decision trees classify instances by sorting them down the tree from the root to 

some leaf node, which provides the classification of the instance. 

 
• Each node in the tree specifies a test of some attribute of the instance, and each 

branch descending from that node corresponds to one of the possible values for 

this attribute. 

 
• An instance is classified by starting at the root node of the tree, testing the 

attribute specified by this node, then moving down the tree branch corresponding 

to the value of the attribute in the given example. This process is then repeated 

for the subtree rooted at the new node. 
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• Decision trees represent a disjunction of conjunctions of constraints on the 

attribute values of instances. 

• Each path from the tree root to a leaf corresponds to a conjunction of attribute 

tests, and the tree itself to a disjunction of these conjunctions 

 
For example, 

The decision tree shown in above figure corresponds to the expression 

(Outlook = Sunny 𝖠 Humidity = Normal) 

(Outlook = Overcast) 

(Outlook = Rain 𝖠 Wind = Weak) 
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APPROPRIATE PROBLEMS FOR 
DECISION TREE LEARNING 

 
Decision tree learning is generally best suited to problems with the following 
characteristics: 

 

1. Instances are represented by attribute-value pairs – Instances are described by 
a fixed set of attributes and their values 

2. The target function has discrete output values – The decision tree assigns a 
Boolean classification (e.g., yes or no) to each example. Decision tree methods 
easily extend to learning functions with more than two possible output values. 

3. Disjunctive descriptions may be required 



Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 7 

 

 

 
 

4. The training data may contain errors – Decision tree learning methods are 

robust to errors, both errors in classifications of the training examples and errors 

in the attribute values that describe these examples. 

 
5. The training data may contain missing attribute values – Decision tree 

methods can be used even when some training examples have unknown values 

 
• Decision tree learning has been applied to problems such as learning to classify 

medical patients by their disease, equipment malfunctions by their cause, and 

loan applicants by their likelihood of defaulting on payments. 

 
• Such problems, in which the task is to classify examples into one of a discrete set 

of possible categories, are often referred to as classification problems. 
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T H E BASIC DECISION TREE LEARNING 
ALGORITHM 

 
• Most algorithms that have been developed for learning decision trees are 

variations on a core algorithm that employs a top-down, greedy search through the 
space of possible decision trees. This approach is exemplified by the ID3 
algorithm and its successor C4.5 
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What is the ID3 algorithm? 
 

• ID3 stands for Iterative Dichotomiser 3 

• ID3 is a precursor to the C4.5 Algorithm. 

• The ID3 algorithm was invented by Ross Quinlan in 1975 

• Used to generate a decision tree from a given data set by employing a top-down, 

greedy search, to test each attribute at every node of the tree. 

• The resulting tree is used to classify future samples. 
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ID3 algorithm 

ID3(Examples, Target_attribute, Attributes) 

 
Examples are the training examples. Target_attribute is the attribute whose value is to be predicted 

by the tree. Attributes is a list of other attributes that may be tested by the learned decision tree. 

Returns a decision tree that correctly classifies the given Examples. 

 
 Create a Root node for the tree 

 If all Examples are positive, Return the single-node tree Root, with label = + 

 If all Examples are negative, Return the single-node tree Root, with label = - 

 If Attributes is empty, Return the single-node tree Root, with label = most common value of 

Target_attribute in Examples 



Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 11 

 

 

 Otherwise Begin 

 A ← the attribute from Attributes that best* classifies Examples 

 The decision attribute for Root ← A 

 For each possible value, vi, of A, 

 Add a new tree branch below Root, corresponding to the test A = vi 

 Let Examples vi, be the subset of Examples that have value vi for A 

 If Examples vi , is empty 

 Then below this new branch add a leaf node with label = most common value of 

Target_attribute in Examples 

 Else below this new branch add the subtree 

ID3(Examples vi, Targe_tattribute, Attributes – {A})) 

 
 End 

 Return Root 

 
* The best attribute is the one with highest information gain 
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Which Attribute Is the Best Classifier? 

• The central choice in the ID3 algorithm is selecting which attribute to test at each 
node in the tree. 

• A statistical property called information gain that measures how well a given 
attribute separates the training examples according to their target classification. 

• ID3 uses information gain measure to select among the candidate attributes at 
each step while growing the tree. 
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ENTROPY MEASURES HOMOGENEITY OF EXAMPLES 

 
• To define information gain, we begin by defining a measure called entropy. 

Entropy measures the impurity of a collection of examples. 

• Given a collection S, containing positive and negative examples of some target 
concept, the entropy of S relative to this Boolean classification is 

 

 
 

 

 

 

Where,  
p+ is the proportion of positive examples in S 

p- is the proportion of negative examples in S. 



Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 14 

 

 

Example: Entropy 

• Suppose S is a collection of 14 examples of some boolean concept, including 9 
positive and 5 negative examples. Then the entropy of S relative to this boolean 
classification is 
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• The entropy is 0 if all members of S belong to the same class 

• The entropy is 1 when the collection contains an equal number of positive and 
negative examples 

• If the collection contains unequal numbers of positive and negative examples, the 
entropy is between 0 and 1 
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INFORMATION GAIN MEASURES THE EXPECTED 
REDUCTION IN ENTROPY 

 
• Information gain, is the expected reduction in entropy caused by partitioning the 

examples according to this attribute. 

• The information gain, Gain(S, A) of an attribute A, relative to a collection of 
examples S, is defined as 
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Example: Information gain 

 
Let, Values(Wind) = {Weak, Strong} 

S 

SWeak 

SStrong 

= [9+, 5−] 

= [6+, 2−] 

= [3+, 3−] 
 

Information gain of attribute Wind: 

 
Gain(S, Wind) = Entropy(S) − 8/14 Entropy (SWeak) − 6/14 Entropy (SStrong) 

= 0.94 – (8/14)* 0.811 – (6/14) *1.00 

= 0.048 
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An Illustrative Example 

• To illustrate the operation of ID3, consider the learning task represented by the 

training examples of below table. 

• Here the target attribute PlayTennis, which can have values yes or no for 

different days. 

• Consider the first step through the algorithm, in which the topmost node of the 

decision tree is created. 
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Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 
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ID3 determines the information gain for each candidate attribute (i.e., Outlook, 

Temperature, Humidity, and Wind), then selects the one with highest information 

gain 
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The information gain values for all four attributes are 
 

 

• Gain(S, Outlook) 

 
• Gain(S, Humidity) 

 
• Gain(S, Wind) 

= 0.246 

 
= 0.151 

 
= 0.048 

 
 

• Gain(S, Temperature) = 0.029 

• According to the information gain measure, the Outlook attribute provides the 

best prediction of the target attribute, PlayTennis, over the training examples. 

Therefore, Outlook is selected as the decision attribute for the root node, and 

branches are created below the root for each of its possible values i.e., Sunny, 

Overcast, and Rain. 
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SRain = { D4, D5, D6, D10, D14} 

 
Gain (SRain , Humidity) = 0.970 – (2/5)1.0 – (3/5)0.917 = 0.019 

Gain (SRain , Temperature) =0.970 – (0/5)0.0 – (3/5)0.918 – (2/5)1.0 = 0.019 

Gain (SRain , Wind) =0.970 – (3/5)0.0 – (2/5)0.0 = 0.970 
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HYPOTHESIS SPACE SEARCH IN DECISION TREE 
LEARNING 

 
• ID3 can be characterized as searching a space of hypotheses for one that fits the 

training examples. 

• The hypothesis space searched by ID3 is the set of possible decision trees. 

• ID3 performs a simple-to complex, hill-climbing search through this hypothesis 
space, beginning with the empty tree, then considering progressively more 
elaborate hypotheses in search of a decision tree that correctly classifies the 
training data 
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Figure: 

• Hypothesis space search by ID3. 

• ID3 searches through the space of 

possible decision trees from simplest to 

increasingly complex, guided by the 

information gain heuristic 
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By viewing ID3 in terms of its search space and search strategy, we can get some 
insight into its capabilities and limitations 

 

1. ID3's hypothesis space of all decision trees is a complete space of finite discrete- 
valued functions, relative to the available attributes. Because every finite discrete- 
valued function can be represented by some decision tree 

• ID3 avoids one of the major risks of methods that search incomplete hypothesis 

spaces : that the hypothesis space might not contain the target function. 
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2. ID3 maintains only a single current hypothesis as it searches through the space 
of decision trees. 

For example, with the earlier version space candidate elimination method, which 
maintains the set of all hypotheses consistent with the available training 
examples. 

By determining only a single hypothesis, ID3 loses the capabilities that follow from 
explicitly representing all consistent hypotheses. 

For example, it does not have the ability to determine how many alternative 
decision trees are consistent with the available training data, or to pose new 
instance queries that optimally resolve among these competing hypotheses 
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3. ID3 in its pure form performs no backtracking in its search. Once it selects an 
attribute to test at a particular level in the tree, it never backtracks to reconsider this 
choice. 

• In the case of ID3, a locally optimal solution corresponds to the decision tree it 
selects along the single search path it explores. However, this locally optimal 
solution may be less desirable than trees that would have been encountered along a 
different branch of the search. 

 

4. ID3 uses all training examples at each step in the search to make statistically 
based decisions regarding how to refine its current hypothesis. 

• One advantage of using statistical properties of all the examples is that the 
resulting search is much less sensitive to errors in individual training examples. 

• ID3 can be easily extended to handle noisy training data by modifying its 
termination criterion to accept hypotheses that imperfectly fit the training data. 
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INDUCTIVE BIAS IN DECISION TREE LEARNING 
 

Inductive bias is the set of assumptions that, together with the training data, 
deductively justify the classifications assigned by the learner to future instances 

 

Given a collection of training examples, there are typically many decision trees 
consistent with these examples. Which of these decision trees does ID3 choose? 

 

ID3 search strategy 

(a) selects in favour of shorter trees over longer ones 

(b) selects trees that place the attributes with highest information gain closest to the 
root. 
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Approximate inductive bias of ID3: Shorter trees are preferred over larger trees 

 
• Consider an algorithm that begins with the empty tree and searches breadth first 

through progressively more complex trees. 

• First considering all trees of depth 1, then all trees of depth 2, etc. 

• Once it finds a decision tree consistent with the training data, it returns the 
smallest consistent tree at that search depth (e.g., the tree with the fewest nodes). 

• Let us call this breadth-first search algorithm BFS-ID3. 

• BFS-ID3 finds a shortest decision tree and thus exhibits the bias "shorter trees are 
preferred over longer trees. 
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A closer approximation to the inductive bias of ID3: Shorter trees are preferred 
over longer trees. Trees that place high information gain attributes close to the root 
are preferred over those that do not. 

 

• ID3 can be viewed as an efficient approximation to BFS-ID3, using a greedy 
heuristic search to attempt to find the shortest tree without conducting the entire 
breadth-first search through the hypothesis space. 

• Because ID3 uses the information gain heuristic and a hill climbing strategy, it 
exhibits a more complex bias than BFS-ID3. 

• In particular, it does not always find the shortest consistent tree, and it is biased to 
favour trees that place attributes with high information gain closest to the root. 



Restriction Biases and Preference Biases 
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Difference between the types of inductive bias exhibited by ID3 and by the CANDIDATE- 

ELIMINATION Algorithm. 

ID3 

• ID3 searches a complete hypothesis space 

• It searches incompletely through this space, from simple to complex hypotheses, until its 

termination condition is met 

• Its inductive bias is solely a consequence of the ordering of hypotheses by its search strategy. Its 
hypothesis space introduces no additional bias 

CANDIDATE-ELIMINATION Algorithm 

• The version space CANDIDATE-ELIMINATION Algorithm searches an incomplete hypothesis 
space 

• It searches this space completely, finding every hypothesis consistent with the training data. 

• Its inductive bias is solely a consequence of the expressive power of its hypothesis 
representation. Its search strategy introduces no additional bias 



Restriction Biases and Preference Biases 
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• The inductive bias of ID3 is a preference for certain hypotheses over others (e.g., 
preference for shorter hypotheses over larger hypotheses), with no hard restriction 
on the hypotheses that can be eventually enumerated. This form of bias is called a 
preference bias or a search bias. 

 

• The bias of the CANDIDATE ELIMINATION algorithm is in the form of a 
categorical restriction on the set of hypotheses considered. This form of bias is 
typically called a restriction bias or a language bias. 
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Which type of inductive bias is preferred in order to generalize beyond the training 
data, a preference bias or restriction bias? 

 

• A preference bias is more desirable than a restriction bias, because it allows the 
learner to work within a complete hypothesis space that is assured to contain the 
unknown target function. 

• In contrast, a restriction bias that strictly limits the set of potential hypotheses is 
generally less desirable, because it introduces the possibility of excluding the 
unknown target function altogether. 



Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 37 

 

 

Occam's razor 
 

Occam's razor: is the problem-solving principle that the simplest solution tends to be 
the right one. When presented with competing hypotheses to solve a problem, one 
should select the solution with the fewest assumptions. 

 

Occam's razor: “Prefer the simplest hypothesis that fits the data”. 



Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 38 

 

 

Why Prefer Short Hypotheses ? 
 

Argument in favour: 

Fewer short hypotheses than long ones: 

• Short hypotheses fits the training data which are less likely to be coincident 

• Longer hypotheses fits the training data might be coincident. 

Many complex hypotheses that fit the current training data but fail to generalize 
correctly to subsequent data. 
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Argument opposed: 

• There are few small trees, and our priori chance of finding one consistent with an 
arbitrary set of data is therefore small. The difficulty here is that there are very 
many small sets of hypotheses that one can define but understood by fewer 
learner. 

• The size of a hypothesis is determined by the representation used internally by the 
learner. Occam's razor will produce two different hypotheses from the same 
training examples when it is applied by two learners, both justifying their 
contradictory conclusions by Occam's razor. On this basis we might be tempted to 
reject Occam's razor altogether. 
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ISSUES IN DECISION TREE LEARNING 

1. Avoiding Overfitting the Data 

Reduced error pruning Rule 

post-pruning 

2. Incorporating Continuous-Valued Attributes 

3. Alternative Measures for Selecting Attributes 

4. Handling Training Examples with Missing Attribute Values 

5. Handling Attributes with Differing Costs 
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1. Avoiding Overfitting the Data 

 
• The ID3 algorithm grows each branch of the tree just deeply enough to perfectly 

classify the training examples but it can lead to difficulties when there is noise in 
the data, or when the number of training examples is too small to produce a 
representative sample of the true target function. This algorithm can produce trees 
that overfit the training examples. 

 

• Definition - Overfit: Given a hypothesis space H, a hypothesis h ∈ H is said to 
overfit the training data if there exists some alternative hypothesis h' ∈ H, such 
that h has smaller error than h' over the training examples, but h' has a smaller 
error than h over the entire distribution of instances. 
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• The below figure illustrates the impact of overfitting in a typical application of decision tree 
learning. 

• The horizontal axis of this plot indicates the total number of nodes in the decision tree, as the tree is being 
constructed. The vertical axis indicates the accuracy of predictions made by the tree. 

• The solid line shows the accuracy of the decision tree over the training examples. The broken line shows 
accuracy measured over an independent set of test example 

• The accuracy of the tree over the training examples increases monotonically as the tree is grown. The 
accuracy measured over the independent test examples first increases, then decreases. 
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How can it be possible for tree h to fit the training examples better than h', but for it to perform 

more poorly over subsequent examples? 

1. Overfitting can occur when the training examples contain random errors or noise 

2. When small numbers of examples are associated with leaf nodes. 

 

Noisy Training Example 

Example 15: <Sunny, Hot, Normal, Strong, -> 

• Example is noisy because the correct label is + 

• Previously constructed tree misclassifies it 
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Approaches to avoiding overfitting in decision tree learning 

• Pre-pruning (avoidance): Stop growing the tree earlier, before it reaches the point where 
it perfectly classifies the training data 

• Post-pruning (recovery): Allow the tree to overfit the data, and then post-prune the tree 

 
Criterion used to determine the correct final tree size 

• Use a separate set of examples, distinct from the training examples, to evaluate the utility of 
post-pruning nodes from the tree 

• Use all the available data for training, but apply a statistical test to estimate whether 
expanding (or pruning) a particular node is likely to produce an improvement beyond the 
training set 

• Use measure of the complexity for encoding the training examples and the decision tree, 
halting growth of the tree when this encoding size is minimized. This approach is called the 
Minimum Description Length 

MDL – Minimize : size(tree) + size (misclassifications(tree)) 
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Reduced-Error Pruning 

• Reduced-error pruning, is to consider each of the decision nodes in the tree to be 
candidates for pruning 

• Pruning a decision node consists of removing the subtree rooted at that node, 
making it a leaf node, and assigning it the most common classification of the 
training examples affiliated with that node 

• Nodes are removed only if the resulting pruned tree performs no worse than-the 
original over the validation set. 

• Reduced error pruning has the effect that any leaf node added due to coincidental 
regularities in the training set is likely to be pruned because these same 
coincidences are unlikely to occur in the validation set 
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The impact of reduced-error pruning on the accuracy of the decision tree is illustrated in below 

figure 

 
• The additional line in figure shows accuracy over the test examples as the tree is pruned. When 

pruning begins, the tree is at its maximum size and lowest accuracy over the test set. As pruning 
proceeds, the number of nodes is reduced and accuracy over the test set increases. 

• The available data has been split into three subsets: the training examples, the validation examples 
used for pruning the tree, and a set of test examples used to provide an unbiased estimate of 
accuracy over future unseen examples. The plot shows accuracy over the training and test sets. 
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Pros and Cons 

Pro: Produces smallest version of most accurate T (subtree of T) 

Con: Uses less data to construct T 

Can afford to hold out Dvalidation?. If not (data is too limited), may make error worse 
(insufficient Dtrain) 
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Rule Post-Pruning 

Rule post-pruning is successful method for finding high accuracy hypotheses 

 

Rule post-pruning involves the following steps: 

1. Infer the decision tree from the training set, growing the tree until the training 
data is fit as well as possible and allowing overfitting to occur. 

2. Convert the learned tree into an equivalent set of rules by creating one rule for 
each path from the root node to a leaf node. 

3. Prune (generalize) each rule by removing any preconditions that result in 
improving its estimated accuracy. 

4. Sort the pruned rules by their estimated accuracy, and consider them in this 
sequence when classifying subsequent instances. 
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Converting a Decision Tree into Rules 
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For example, consider the decision tree. The leftmost path of the tree in below 
figure is translated into the rule. 

IF (Outlook = Sunny) ^ (Humidity = High) 

THEN PlayTennis = No 

 
Given the above rule, rule post-pruning would consider removing the preconditions 

(Outlook = Sunny) and (Humidity = High) 

 
• It would select whichever of these pruning steps produced the greatest 

improvement in estimated rule accuracy, then consider pruning the second 
precondition as a further pruning step. 

• No pruning step is performed if it reduces the estimated rule accuracy. 
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There are three main advantages by converting the decision tree to rules before 
pruning 

• Converting to rules allows distinguishing among the different contexts in which a 
decision node is used. Because each distinct path through the decision tree node 
produces a distinct rule, the pruning decision regarding that attribute test can be 
made differently for each path. 

• Converting to rules removes the distinction between attribute tests that occur near 
the root of the tree and those that occur near the leaves. Thus, it avoid messy 
bookkeeping issues such as how to reorganize the tree if the root node is pruned 
while retaining part of the subtree below this test. 

• Converting to rules improves readability. Rules are often easier for to understand. 
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2. Incorporating Continuous-Valued Attributes 

 
Continuous-valued decision attributes can be incorporated into the learned tree. 

 

There are two methods for Handling Continuous Attributes 

1. Define new discrete valued attributes that partition the continuous attribute value 
into a discrete set of intervals. 

E.g., {high ≡ Temp > 35º C, med ≡ 10º C < Temp ≤ 35º C, low ≡ Temp ≤ 10º C} 

 

2. Using thresholds for splitting nodes 

e.g., A ≤ a produces subsets A ≤ a and A > a 
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What threshold-based boolean attribute should be defined based on Temperature? 
 

 

 

Pick a threshold, c, that produces the greatest information gain 

• In the current example, there are two candidate thresholds, corresponding to the 
values of Temperature at which the value of PlayTennis changes: (48 + 60)/2, and 
(80 + 90)/2. The information gain can then be computed for each of the candidate 
attributes, Temperature >54, and Temperature >85 and the best can be selected 
(Temperature >54) 
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3. Alternative Measures for Selecting Attributes 

 
The problem is if attributes with many values, Gain will select it ? 

Example: consider the attribute Date, which has a very large number of possible 
values. (e.g., March 4, 1979). 

• If this attribute is added to the PlayTennis data, it would have the highest 
information gain of any of the attributes. This is because Date alone perfectly 
predicts the target attribute over the training data. Thus, it would be selected as the 
decision attribute for the root node of the tree and lead to a tree of depth one, 
which perfectly classifies the training data. 

• This decision tree with root node Date is not a useful predictor because it perfectly 
separates the training data, but poorly predict on subsequent examples. 
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One Approach: Use GainRatio instead of Gain 

 

• The gain ratio measure penalizes attributes by incorporating a split information, 
that is sensitive to how broadly and uniformly the attribute splits the data 

 
 

 
 

• where Si is subset of S, for which attribute A has value vi 
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4. Handling Training Examples with Missing Attribute Values 

 
The data which is available may contain missing values for some attributes 

 

Example: Medical diagnosis 

• <Fever = true, Blood-Pressure = normal, …, Blood-Test = ?, …> 

• Sometimes values truly unknown, sometimes low priority (or cost too high) 
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Example : PlayTennis 
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Strategies for dealing with the missing attribute value 

• If node n test A, assign most common value of A among other training examples 
sorted to node n 

• Assign most common value of A among other training examples with same target 
value 

• Assign a probability pi to each of the possible values vi of A rather than simply 
assigning the most common value to A(x) 
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5. Handling Attributes with Differing Costs 

 
In some learning tasks the instance attributes may have associated costs. 

For example: 

• In learning to classify medical diseases, the patients described in terms of 
attributes such as Temperature, BiopsyResult, Pulse, BloodTestResults, etc. 

• These attributes vary significantly in their costs, both in terms of monetary cost 
and cost to patient comfort 

• Decision trees use low-cost attributes where possible, depends only on high-cost 
attributes only when needed to produce reliable classifications 
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How to Learn A Consistent Tree with Low Expected Cost? 

 

One approach is replace Gain by Cost-Normalized-Gain 

 

Examples of normalization functions 
 



 

 

 

 

 

 

 

 

 

 

 

 

 
 

Artificial Neural Networks 



 

 

Overview 
 

1. Introduction 

2. ANN representations 

3. Perceptron Training 

4. Gradient Descent and Delta Rule 

5. Multilayer networks and Backpropagation algorithm 

6. Remarks on the backpropagation algorithm 

7. An illustrative example: face recognition 

8. Advanced topics in artificial neural networks 



 

 

Introduction 
 

 

 

 

 

 

 

- Human brain : densely interconnected network 

of 1011 neurons each connected to 104 others 

(neuron switching time : approx. 10-3 sec.) 
 

 

 

- Properties of artificial neural nets (ANN’s): 

• Many neuron-like threshold switching units 

• Many weighted interconnections among units 

• Highly parallel, distributed process 



 

 

Appropriate problems for neural network learning 

 
• Input is high-dimensional discrete or real-valued 

(e.g. raw sensor input) 

• Output is discrete or real valued 

• Output is a vector of values 

• Possibly noisy data 

• Long training times accepted 

• Fast evaluation of the learned function required. 

• Not important for humans to understand the weights 

 
Examples: 

• Speech phoneme recognition 

• Image classification 

• Financial prediction 



 

 

Appropriate problems for neural network learning 
 

 

 

 

 

 

-ALVINN drives 70 mph on highways 

-The ALVINN system uses backpropagation algorithm to learn to steer 

an antonomous vehicle driving at speeds up to 70 miles per hour 
 

 

 
 



 

 

Perceptron 
 

 

 

 

 

 

• Input values → Linear weighted sum → Threshold 
 



 

 

Decision surface of a perceptron 
 

 

 

 

• Representational power of perceptrons 

- Linearly separable case like (a) : 

possible to classify by hyperplane, 

- Linearly inseparable case like (b) : 

impossible to classify 
 



 

 

Perceptron training rule (delta rule) 
 

 

 

wi  wi + wi 

wherewi =  (t – o) xi 

Where: 

• t = c(x) is target value 

• o is perceptron output 

•  is small constant (e.g., 0.1) called learning rate 

Can prove it will converge 

• If training data is linearly separable 



 

 

Gradient descent 
 

 

 

 

 

 



 

 

Derivation of gradient descent 
 

 

 

 

 Gradient descent 

- Error (for all training examples.): 
 

 

- the gradient of E ( partial differentiating ) : 
 

- direction : steepest increase in E. 

- Thus, training rule is as follows. 
 

(The negative sign : the direction that decreases E) 



 

 

Derivation of gradient descent 

 

 

 

 

 

where xid denotes the single input 

components xi for training example d 

 
- The weight update rule for gradient descent 





 

 

Gradient descent and delta rule 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Because the error surface 

contains only a single global 

minimum, this algorithm will 

converge to a weight vector with 

minimum error, given a 

sufficiently small  is used 



 

 

Hypothesis Space 
 

 

 

 

 

- Error of different hypotheses 

- For a linear unit with two weights, the hypothesis space H is the wo,w1 plane. 

- This error surface must be parabolic with a single global minimum (we 

desire a hypothesis with minimum error). 



 

 

Stochastic approximation to gradient descent 
 

 

 
 

 

- Stochastic gradient descent (i.e. incremental mode) can sometimes 

avoid falling into local minima because it uses the various gradient of E 

rather than overall gradient of E. 



 

 

Summary 

 
• Perceptron training rule guaranteed to succeed if 

– training examples are linearly separable 

– Sufficiently small learning rate η 

• Linear unit training rule using gradient descent 

– Converge asymptotically to min. error hypothesis 

(Guaranteed to converge to hypothesis with minimum 

squared error ) 



 

 

Multilayer networks and the backpropagation algorithm 
 

 

 

 

 

 

 Speech recognition example of multilayer networks learned 

by the backpropagation algorithm 

 Highly nonlinear decision surfaces 
 



 

 

Sigmoid Threshold Unit 
 
 

 

 



 

 

The Backpropagation algorithm 



 

 

Adding Momentum 
 

 

 

 

 

 Often include weight momentum α
 

- nth iteration update depend on (n-1)th iteration 

-  : constant between 0 and 1 (momentum) 

 Roles of momentum term

 The effect of keeping the ball rolling through small local 

minima in the error surface 

 The effect of gradually increasing the step size of the 

search in regions (greatly improves the speed of learning) 



 

 

Convergence and Local Minima 

 
 Gradient descent to some local minimum 

– Perhaps not global minimum... 

– Add momentum 

– Stochastic gradient descent 



 

 

Expressive Capabilities of ANNs 
 

 
 



 

 

Hidden layer representations 
 

 

 

 

 

Hidden layer representations 

- This 8x3x8 network was trained to learn the identity function. 

- 8 training examples are used. 

- After 5000 training iterations, the three hidden unit values encode 

the eight distinct inputs using the encoding shown on the right. 
 
 



 

 

 

 

 

 

 

Learning the 8x3x8 network 

- Most of the interesting weight 

changes occurred during the 

first 2500 iterations. 



 

 

Generalization, Overfitting, and Stopping Criterion 

 

• Termination condition 

– Until the error E falls below some predetermined threshold 

• Techniques to address the overfitting problem 

• Weight decay : Decrease each weight by some small factor 

during each iteration. 

• Cross-validation (k-fold cross-validation) 



 

 

Neural Nets for Face Recognition 
(http://www.cs.cmu.edu/tom/faces.html) 

 

• Training images : 20 different persons with 32 images per person. 

• After 260 training images, the network achieves an accuracy of 

90% over test set. 

• Algorithm parameters : η=0.3, α=0.3 

http://www.cs.cmu.edu/tom/faces.html)


 

 

Alternative Error Functions 
 

 

 

 

• Penalize large weights: (weight decay) : Reducing the risk of 

overfitting 

 
 
• Train on target slopes as well as values: 

 

• Minimizing the cross entropy : Learning a probabilistic output 

function (chapter 6) 

 td log od  (1 td ) log(1 od ) 
d∈ D 



 

 

Recurrent Networks 
 

 

 

 

 

 

(a) (b) 
 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Feedforward network 

(b) Recurrent network 

(c) Recurrent network unfolded 

in time 

(c) 



 

 

Dynamically Modifying Network Structure 

 
• To improve generalization accuracy and training 

efficiency 

• Cascade-Correlation algorithm (Fahlman and Lebiere 1990) 

– Start with the simplest possible network (no hidden units) and 

add complexity 

• Lecun et al. 1990 

– Start with the complex network and prune it as we find that 

certain connectives are inessential. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Evaluating Hypotheses 



 

 

 
 
 
 
 
 
 

 Context 

 
➔ 

 

Motivation 

' Estimating Hypothesis Accuracy 

' Basics of Sampling Theory 

' Difference in Error of Two Hypotheses 

' Comparing Learning Algorithms 

' Summary 



Motivation 
 

 

 
 
 
 
 
 
 

 

' Goal: Introduction to statistical methods for estimating 

hypothesis accuracy, focusing on the followings: 

✔ Given the observed accuracy of a hypothesis over a limited 

sample of data, how well does this estimate its accuracy over 

additional examples? 

✔ Given that one hypothesis outperforms another over some 

sample of data, how probable is it that this hypothesis is more 

accurate in general? 

✔ When data is limited what is the best way to use this data to 

both learn a hypothesis and estimate its accuracy? 



Motivation 2 
 

 

 

 

 

 

' It is important to evaluate the performance of the learned 

hypotheses as precisely as possible: 

✔ To understand whether to use the hypothesis 

✗ Example: Learning from limited-size database indicating the 

effectiveness of different medical treatments 

✔ Evaluating hypotheses is an integral component of many learning 

methods 

✗ Example: in post-pruning decision trees to avoid overfiting 

✔ Methods for comparing the accuracy of two hypotheses 

✔ Methods for comparing two learning algorithms when only limited 

data is available 



Motivation 3 
 

 

 

' Estimating the accuracy of hypothesis is relatively straightforward 

when data is plentiful. 

' Given only a limited set of data, two key difficulties arise: 

✔ Bias in the estimate: 

✗ Observed accuracy of the learned hypothesis over the training examples 

is often a poor estimator of its accuracy over future examples. 

✗ To obtain an unbiased estimate of future accuracy, we typically test the 

hypothesis on some set of test examples chosen independently of training 

examples and the hypothesis. 

✔ Variance in the estimate: 

✗ The measured accuracy can still vary from the true accuracy, depending 

on the makeup of the particular set of test examples. 



 

 

 

 

 

 

 

 

Context 

 
' Motivation 

➔ Estimating Hypothesis Accuracy 

✔ Sample Error and True Error 

' Basics of Sampling Theory 

' Difference in Error of Two Hypotheses 

' Comparing Learning Algorithms 

' Summary 



 

 

 

 

 

Estimating Hypothesis Accuracy 

' Setting: 

✔ Some set of possible instances X over which various target functions 

may be defined 

✔ Different instances in X may be encountered with different 

frequencies: 

✗  Unknown the probability distribution D that defines the probability of 

encountering each instance in X 

✗ D says nothing about whether x is a positive or a negative example 

✔ Learning task: Learn target concept or target function f by considering 

a space H of possible hypotheses 

✔ Training examples are provided to the learner by a trainer 

✗ who gives each instance independently 

✗ according to the distribution D, 
 

✗ then forwards the instance x along with its correct target value 

learner 

f(x) to the 



Sample Error and True Error 
 

 

 

 

 

 

 

 

' The sample error of a hypothesis with respect to some sample S of 

instances given from X is the fraction of S that it misclassifies: 

 
✔ Def: The sample error of a hypothesis h with respect to the target 

function f and data sample S is 

 

 

 
Where 

errorS h 
1 

n x S 

f x ,h x 

 

' n is the number of examples in S, 

' the quantity f x ,h x is 1 if f x h x and 0 otherwise 
 



Sample Error and True Error 2 
 

 

 

 

 

' The true error of a hypothesis is the probability that it will 

misclassify a single randomly given instance from the 

distribution D. 

✔ Def: The true error of hypothesis h with respect to target function f 

and distribution D, is the probability that h will misclassify an 

instance drawn at random according to D 

errorD h Prx D f x h x 
 

Here the notation Pr x D denotes that the probability is taken over the 

instance distribution D. 

' To wish to know is the true error errorD h . 

' Main question: How good is an estimate of errorD h provided 

by errorS h ? 



Context 
 

 

 

 

 

 

 

' Motivation 

' Estimating Hypothesis Accuracy 

➔ Basics of Sampling Theory 

✔ Error Estimation and Estimating Binomial Proportions 

✔ The Binomial Distribution 

✔ Mean and Variance 

✔ Confidence Intervals 

✔ Two-Sided and One-Sided Bounds 

' Difference in Error of Two Hypotheses 

' Comparing Learning Algorithms 

' Summary 



Basics of Sampling Theory 
 

 

S 

 

' Question: How does the derivation between sample error and true 

error depend on the size of the data sample? 

' Equal with the statistical problem: The problem of estimating the 

proportion of a population that exhibits some property, given the 

observed proportion over some random sample of the population . 

'     Here: The property of interest is that h misclassifies the example 

'     Answer: 

✔   When measuring the sample error we are performing an experiment 

with a random outcome. 

✔   Repeating this experiment many times, each time drawing a different 

random sample set Si of size n, we would expect to observe 

different values for the various errorS h depending on random 

differences  in the makeup of the various
i 

S 

✔ In such cases error h 
i 

the outcome of the ith such experiment is a 

random variable 

i 



 

 

S S S 

 

Error Estimation and Estimating Binomial 

Proportions 2 
 

' Imagine: 

✔ Run k random experiments, 

✔ Measuring the random variables 

 

 
error h , error h error h 

1 2 k 

✔ Plot a histogram displaying the frequency with which we observed 

each possible error value 

' Result: histogram 
 



 

 

 

 

The Binomial Distribution 

' General setting to which the Binomial distribution applies: 

✔ There is a base or underlying experiment whose outcome can be described by a 

random variable, say Y. It can take on two possible values. 

✔ The probability that Y=1 on any single trial of the underlying experiment is 

given by some constant p, independent of the outcome of any other 

experiment. 

The probability that Y=0 is therefore 1-p. 

Typically, p is not known in advance, and the problem is to estimate it. 

✔ A series of n independent trials of the underlying experiment is performed, 

producing the sequence of independent, identically distributed random 

variables Y 1, Y 2 Y k. 

Let R denote the number of trials for which Y i 1 in this series of n 

experiments 
R    

 

i 1 
 

✔ The probability that R will take on a specific value r is given by the Binomial 

distribution: Pr R r
 n! 

 
r ! n r ! 

pr 1 p n   r 



Mean and Variance 
 

 

 

 

 

 

' Def: Consider Y y1 , y2 , yn 

E Y 

The expected value of Y, E[Y], is 
 

 

 

i 1 

 

' Example: If Y takes on the value 1 with probability 0.7 and the 

value 2 with probability 0.3 then its expected value is 

1 0.7 2 0.3 1.3 
 

 

 

' In case of a random variable Y governed by a Binomial 

distribution the expected value is: 

E Y n p 



Mean and Variance 2 
 

 

 

 

' Variance captures the „width“ or „spread“ of the probability 

distribution; that is it captures how far the random variable is 

expected to vary from its mean value 

' Def: The variance of Y, Var[Y], is 
Var Y E Y E Y 2 

' The square root of the variance is called the standard deviation of 

Y, denoted by Y 
 

' Def: The standard deviation of a random variable Y, 
E Y E Y 2 

 
 

Y is 

Y 
 

 

 

' In case of a random variable Y governed by Binomial distribution 

the variancVeaarnYd then 
 

 

Y 

spta1ndarpd deviation are defined as follows: 

n p 1 p 



Confidence Intervals 
 

 

errorS h 1 errorS h 

n 

 

 

 

' Describe: 

✔ Give an interval within which the true value is expected to fall, along 

with the probability with which it is expected to fall into this interval 

' Def: An N% confidence interval for some parameters p is an 

interval that is expected with probability N% to contain p. 
 

' How confidence intervals for 
errorD h 

can be derived: 

✔ Binomial probability distribution governing the estimator errorS h 
✔ The mean value of distribution is 

✔ Standard deviation is 

erro D 

errorS h 

' Goal: Derive a 95% confidence interval => 

find the interval centered around the mean value 

 
errorD h , 

which is wide enough to contain 95% of total probability under 

this distribution 



Confidence Intervals 2 
 

 

 

 

' Question: How can the size of interval that contains N% of the 

probability mass be found for given N ? 

' Problem: Unfortunately for the Binomial distribution this 

calculation can be quite tedious. 

' But: Binomial distribution can be closely approximated by 

Normal distribution 
 



Confidence Intervals 3 
 

 

2 
2 

1 x 

2 

 

 

 

 

 

' Normal or gaussian distribution is a bell-shaped distribution 

defined by the probability density fun2 ction 

p x
 1 

e 
 

 

' If the random variable X follows a normal distribution then: 

✔ The probability that Xb will fall into the interval (a,b) is given by 
p X dx 

a 

 

✔ The expected, or meaEn vXalue of X, E[X], is 
 

 

✔ The variance of X, VVaarr(XX) is   2 

 

 

✔ The standard deviation of X, 
X 



Two-Sided and One-Sided Bounds 
 

 

 

 

' Two-sided bound: It bounds the estimated quantity from above 

and below 

' One-sided bound: If we are interested in questions like: What is 

the probability that errorD h is at most U 
 

 

 

 

 

 

 

 

 

 

 

 

 

  



Two-Sided and One-Sided Bounds 2 
 

 

 

 
 

' If the sample error is considered as normal distributed indicating 

that: 

✔ the errorD h couches with N% probability in the interval 
 

errorS h zn 

 

 

where 
zN 

is a constant 
 

 

 

Confidence level N% 50.00% 68.00% 80.00% 90.00% 95.00% 98.00% 99.00% 
 

Constant 0.67 1 1.28 1.64 1.96 2.33 2.58 
 

Table 1: Values of zN  for two sided N% confidence intervals 
 

errorS h 1 errorS h 

n 
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0.24 0.76 

50 

 

 

 

 

 

 

 

 

' Example: 

✔ n =50 

✔ Hypothesis h makes r =16 errors => 

✔ Using the values from Table 1 

 
errorS h 

50
 

✗ With 99% probability is 

0.32 2.58 

errorD h in the interval 

 

 
✗ If the numbers of errors is 12 then 

probability 

errorD h  
is in the interval with 50% 

0.24 0.67 0.24 0.04 

50 
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' One-sided error bound 

It can be computed with half of the probability of the error from 

normal distributed two-sided error bound 

' Example: 

✔ h delivers 12 errors, n= 40 

✔ It leads to a (two sided) 95% confidence interval of 
100 1 95 0.05 

✔ In this case so 

0.30 0.14 
=>

 

✔ eTrhrours, whe can apply th0.e30ru0l.e1 
100 1 2 97.5 

w ith confidence that 
D is at most 

errorD h 
✔ Making no assumption about the lower bound on

erro
 

✔ Thus we have a one-sided error bound on error 

with double the confidence that we had in the corresponding two- 

sided bound 

D 
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Difference in Errors of Two Hypotheses 

' Consider: 

✔ two hypotheses h1 and h2 for some discrete-valued target function 

✔ 
h1 has been tested on a sample 

examples 

S1 containing n1 randomly drawn 

✔ 
h2 

has been tested on a sample 
S 2 containing 

n2 randomly drawn 

examples 

' Suppose we wish to estimate the difference d between the true 

errors of these two hypotheses 

d errorD   h1 errorD   h2 

' 4-step procedure to derive confidence interval estimates for d 
 

✔ Choose the estimator d errorS h1 errorS h2 

 

✔ We do not prove but it can be shown that d gives an unbiased 

estimate of d; that is E d d 



Hypothesis Testing 
 

 

1 2 

S S 2 

1 S S S 

 

 

' Question: What is the probability distribution governing the 

random variable d ? 

' Answer: 

✔ 
n1 , n2 both errors errorS h1 and errorS h2 follow a 

distribution that is approximately normal 

✔ Difference of two normal distributions is also normal => 
d 

is also approximately normal 
 

✔ The variance  of this distribution is the sum of the variances of 

error h 
1 

and error h 
2 

✔ We have 
2 

errorS h1 

d 
d

 

1 error h 
1 

n
1
 

error h 
2 

1 error h 
2 

n
2
 

✔ For random vari2able obeying a normal distribution with mean d 

and variance 

the N% confidence interval estimate for d is d   zN 
 

1 

1 2 2 
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  1 1  

n1 

errorS h1 1 errorS h1 
  2 2  

n2 

errorS h2 1 errorS h2 

2 

S 

 

 

 

 

✔ So d zN 
 

zN is the same constant as described in Table 1 
 

' Test over same data 

✔ h1 And h2 are tested on a single sample S (where S is still 

independent of h1 and h2) 
d 

✔ Redefine :
d error h

 
errorS h2 

 

 

d 

✔ The variance in this newd 

variance of the original 

will usually be smaller than the 

 

✔ Using  a single sample S eliminatesSth1e varianSce due to random 

differences in the compositions of and 

1 
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Comparing Learning Algorithms 

' Goal: Comparing the performance of two learning algorithm 
L A and LB 

 

' Question: 

✔ What is an appropriate test for comparing learning algorithms? 

✔ How can we determine whether an observed difference between the 

algorithms is statistically significant? 

' Active debate within the machine-learning research community 
regarding the best method for comparison 

L A LB 

' Task: Determine which of and is the better learning 

method on average for learning some particular target function f 

✔ „On average“ is to consider the relative performance of these two 

algorithms averaged over all the training set of size n that might be 

drawn from the underlying instance distribution D 

ES D errorD L A S errorD LB S 
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i i 

' In practice: 

✔ We have only a limited sample D0 

✔ Divide D0 into a training set S0 and a disjoint test set T 0 

✔ The training data can be used to train both 
L A and LB 

 

✔ Test set can be used to compare the accuracy of the two learned 

hypothesis error 
0 

LA S0 error 
0 

LB S0 

' Improvement: 

✔ Partition the available data 
D0 into k disjoint subsets 

 
T 1 ,T 2 , ,T k 

 

of equal 

size, where this size is at least 30 

✔ For i Tfrom 1 to k, do S 
use i for the test and the remaining data for training set i 

Si D0 T i 
hA LA Si 

hB LB Si 

i errorT hA errorT hB k
 

1 
 

 

k i 

T T 
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' The approximate N% confidence interval for estima ting the 

quantity in error 
0 

LA S0 

 

 

error 
0 

 

t N , k 1 s 

LB S0 using is given by 

 

 
where 

t N , k 1 is a constant that plays a role analogous to that of 
zN

 

S 
' defined as following S 

  1 k 

k k 1 i 1 

 

 

   
 

Confidence lev 
 

 

   90% 95% 

 = 2 2,92 4,3 

 = 5 2,02 2,57 

 = 10 1,81 2,23 

 = 20 1,72 2,09 

 = 30 1,7 2,04 

 = ## 1,66 1,98 

 = 

 1,64 1,96 

     

T T 

i 
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Summary 

' Statistical theory provides a basis for estimating the true error 

( errorD h ) of hypothesis h, based on its observed error (errorS h ) 

over a sample S of data. 

' In general, the problem of estimating confidence intervals is 

approached by identifying the parameter to be estimated ( 

 
D h 

)
 

and an estimator ( errorS h ) for this quantity. 
 

' Because the estimator is a random variable it can be characterised 

by the probability distribution that governs its value. 

' Confidence intervals can then be calculated by determining the 

interval that contains the desired probability mass under this 

distribution. 

' A cause of estimation error is the variance in the estimate. Even with 

an unbiased estimator, the observed value of the estimator is likely 

to vary from one experiment to another. 

The variance of the distribution  governing the estimat or 

characterises how widely this estimate is likely to 



 

 

 

Summary 2 

 
' Comparing the relative effectiveness of two learning algorithms is 

an estimation problem that is relatively easy when data and time 

are unlimited, but more difficult when these resources are 

limited. 

'   One approach to run the learning algorithms on different subsets 

of available data, testing the learned hypotheses on the remaining 

data, then averaging the result of these experiments. 

'    In most cases considered here, deriving confidence intervals 

involves making a number of assumptions and approximations. 
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BAYEIAN LEARNING 
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INTRODUCTION 
Bayesian learning methods are relevant to study of machine learning for two 
different reasons. 

• First, Bayesian learning algorithms that calculate explicit probabilities for 
hypotheses, such as the naive Bayes classifier, are among the most practical 
approaches to certain types of learning problems 

• The second reason is that they provide a useful perspective for understanding 
many learning algorithms that do not explicitly manipulate probabilities. 
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Features of Bayesian Learning Methods 

• Each observed training example can incrementally decrease or increase the estimated 
probability that a hypothesis is correct. This provides a more flexible approach to 
learning than algorithms that completely eliminate a hypothesis if it is found to be 
inconsistent with any single example 

• Prior knowledge can be combined with observed data to determine the final 
probability of a hypothesis. In Bayesian learning, prior knowledge is provided by 
asserting (1) a prior probability for each candidate hypothesis, and (2) a probability 
distribution over observed data for each possible hypothesis. 

• Bayesian methods can accommodate hypotheses that make probabilistic predictions 

• New instances can be classified by combining the predictions of multiple hypotheses, 
weighted by their probabilities. 

• Even in cases where Bayesian methods prove computationally intractable, they can 
provide a standard of optimal decision making against which other practical methods 
can be measured. 



5 

 

 

Practical difficulty in applying Bayesian methods 

 
• One practical difficulty in applying Bayesian methods is that they typically require 

initial knowledge of many probabilities. When these probabilities are not known 
in advance they are often estimated based on background knowledge, previously 
available data, and assumptions about the form of the underlying distributions. 

 

• A second practical difficulty is the significant computational cost required to 
determine the Bayes optimal hypothesis in the general case. In certain specialized 
situations, this computational cost can be significantly reduced. 
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BAYES THEOREM 
 
Bayes theorem provides a way to calculate the probability of a hypothesis based on 
its prior probability, the probabilities of observing various data given the hypothesis, 
and the observed data itself. 

Notations 

• P(h) prior probability of h, reflects any background knowledge about the chance 
that h is correct 

• P(D) prior probability of D, probability that D will be observed 

• P(D|h) probability of observing D given a world in which h holds 

• P(h|D) posterior probability of h, reflects confidence that h holds after D has been 
observed 
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Bayes theorem is the cornerstone of Bayesian learning methods because it provides 
a way to calculate the posterior probability P(h|D), from the prior probability P(h), 
together with P(D) and P(D(h). 

 

 

 

 
P(h|D) increases with P(h) and with P(D|h) according to Bayes theorem. 

P(h|D) decreases as P(D) increases, because the more probable it is that D will be 
observed independent of h, the less evidence D provides in support of h. 



Maximum a Posteriori (MAP) Hypothesis 
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• In many learning scenarios, the learner considers some set of candidate hypotheses 
H and is interested in finding the most probable hypothesis h ∈ H given the 
observed data D. Any such maximally probable hypothesis is called a maximum a 
posteriori (MAP) hypothesis. 

• Bayes theorem to calculate the posterior probability of each candidate hypothesis is hMAP 
is a MAP hypothesis provided 

 

 

 

 

 

 
 

• P(D) can be dropped, because it is a constant independent of h 



Maximum Likelihood (ML) Hypothesis 

9 

 

 

 

 

In some cases, it is assumed that every hypothesis in H is equally probable a priori 

(P(hi) = P(hj) for all hi and hj in H). 

In this case the below equation can be simplified and need only consider the term 
P(D|h) to find the most probable hypothesis. 

 
 

 
P(D|h) is often called the likelihood of the data D given h, and any hypothesis that 
maximizes P(D|h) is called a maximum likelihood (ML) hypothesis 
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Example 

Consider a medical diagnosis problem in which there are two alternative hypotheses 
• The patient has a particular form of cancer (denoted by cancer) 
• The patient does not (denoted by ¬ cancer) 

 
The available data is from a particular laboratory with two possible outcomes: + 
(positive) and - (negative) 
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• Suppose a new patient is observed for whom the lab test returns a positive (+) 
result. 

• Should we diagnose the patient as having cancer or not? 
 

 

 

 



12 

 

 

BAYES THEOREM AND CONCEPT LEARNING 

What is the relationship between Bayes theorem and the problem of concept 

learning? 

 
Since Bayes theorem provides a principled way to calculate the posterior probability 

of each hypothesis given the training data, and can use it as the basis for a 

straightforward learning algorithm that calculates the probability for each possible 

hypothesis, then outputs the most probable. 
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Brute-Force Bayes Concept Learning 

 
We can design a straightforward concept learning algorithm to output the maximum 
a posteriori hypothesis, based on Bayes theorem, as follows: 

 

 

 



In order specify a learning problem for the BRUTE-FORCE MAP LEARNING 
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algorithm we must specify what values are to be used for P(h) and for P(D|h) ? 

 
Lets choose P(h) and for P(D|h) to be consistent with the following assumptions: 

• The training data D is noise free (i.e., di = c(xi)) 

• The target concept c is contained in the hypothesis space H 

• We have no a priori reason to believe that any hypothesis is more probable than any other. 



What values should we specify for P(h)? 
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• Given no prior knowledge that one hypothesis is more likely than another, it is 
reasonable to assign the same prior probability to every hypothesis h in H. 

• Assume the target concept is contained in H and require that these prior 
probabilities sum to 1. 
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What choice shall we make for P(D|h)? 

 
• P(D|h) is the probability of observing the target values D = (d1 . . .dm) for the 

fixed set of instances (x1 . . . xm), given a world in which hypothesis h holds 

• Since we assume noise-free training data, the probability of observing 

classification di given h is just 1 if di = h(xi) and 0 if di # h(xi). Therefore, 
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Given these choices for P(h) and for P(D|h) we now have a fully-defined problem 
for the above BRUTE-FORCE MAP LEARNING algorithm. 

 
In a first step, we have to determine the probabilities for P(h|D) 
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To summarize, Bayes theorem implies that the posterior probability P(h|D) under 
our assumed P(h) and P(D|h) is 

 
 

where |VSH,D| is the number of hypotheses from H consistent with D 
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The Evolution of Probabilities Associated with Hypotheses 

 
• Figure (a) all hypotheses have the same probability. 

• Figures (b) and (c), As training data accumulates, the posterior probability for 
inconsistent hypotheses becomes zero while the total probability summing to 1 is 
shared equally among the remaining consistent hypotheses. 

 

 

 

 



20 

 

 

MAP Hypotheses and Consistent Learners 

A learning algorithm is a consistent learner if it outputs a hypothesis that commits zero errors over 
the training examples. 

Every consistent learner outputs a MAP hypothesis, if we assume a uniform prior probability 
distribution over H (P(hi) = P(hj) for all i, j), and deterministic, noise free training data (P(D|h) =1 if 
D and h are consistent, and 0 otherwise). 

 

Example: 

• FIND-S outputs a consistent hypothesis, it will output a MAP hypothesis under the probability 
distributions P(h) and P(D|h) defined above. 

• Are there other probability distributions for P(h) and P(D|h) under which FIND-S outputs MAP 
hypotheses? Yes. 

• Because FIND-S outputs a maximally specific hypothesis from the version space, its output 
hypothesis will be a MAP hypothesis relative to any prior probability distribution that favours more 
specific hypotheses. 
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• Bayesian framework is a way to characterize the behaviour of learning algorithms 

• By identifying probability distributions P(h) and P(D|h) under which the output is 
a optimal hypothesis, implicit assumptions of the algorithm can be characterized 
(Inductive Bias) 

• Inductive inference is modelled by an equivalent probabilistic reasoning system 
based on Bayes theorem 
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MAXIMUM LIKELIHOOD AND LEAST-SQUARED 
ERROR HYPOTHESES 

Consider the problem of learning a continuous-valued target function such as neural 

network learning, linear regression, and polynomial curve fitting 

 
A straightforward Bayesian analysis will show that under certain assumptions any 

learning algorithm that minimizes the squared error between the output hypothesis 

predictions and the training data will output a maximum likelihood (ML) hypothesis 
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Learning A Continuous-Valued Target Function 

 
• Learner L considers an instance space X and a hypothesis space H consisting of some class of real- 

valued functions defined over X, i.e., (∀ h ∈ H)[ h : X → R] and training examples of the form 

<xi,di> 

• The problem faced by L is to learn an unknown target function f : X → R 

• A set of m training examples is provided, where the target value of each example is corrupted by 

random noise drawn according to a Normal probability distribution with zero mean (di = f(xi) + ei) 

• Each training example is a pair of the form (xi ,di ) where di = f (xi ) + ei . 

– Here f(xi) is the noise-free value of the target function and ei is a random variable representing 
the noise. 

– It is assumed that the values of the ei are drawn independently and that they are distributed 
according to a Normal distribution with zero mean. 

• The task of the learner is to output a maximum likelihood hypothesis, or, equivalently, a MAP 
hypothesis assuming all hypotheses are equally probable a priori. 
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Learning A Linear Function 

 
 
• The target function f corresponds to the solid 

line. 

• The training examples (xi , di ) are assumed to 

have Normally distributed noise ei with zero 

mean added to the true target value f (xi ). 

• The dashed line corresponds  to the hypothesis 
hML with least-squared training error, hence the 

maximum likelihood hypothesis. 

• Notice that the maximum likelihood hypothesis is 

not necessarily identical to the correct 

hypothesis, f, because it is inferred from only a 

limited sample of noisy training data 
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Before showing why a hypothesis that minimizes the sum of squared errors in this setting is also a 
maximum likelihood hypothesis, let us quickly review probability densities and Normal 

distributions 

 

Probability Density for continuous variables 

e: a random noise variable generated by a Normal probability distribution 

<x1 . . . xm>: the sequence of instances (as before) 

<d1 . . . dm>: the sequence of target values with di = f(xi) + ei 
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Normal Probability Distribution (Gaussian Distribution) 

 
A Normal distribution is a smooth, bell-shaped distribution that can be completely 
characterized by its mean μ and its standard deviation σ 
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Using the previous definition of hML we have 
 

 
Assuming training examples are mutually independent given h, we can write P(D|h) as the product of 
the various (di|h) 

 

 
Given the noise ei obeys a Normal distribution with zero mean and unknown variance σ2 , each di 

must also obey a Normal distribution around the true targetvalue f(xi). Because we are writing the 
expression for P(D|h), we assume h is the correct description of f. Hence, µ = f(xi) = h(xi) 
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It is common to maximize the less complicated logarithm, which is justified because of the 
monotonicity of function p. 

The first term in this expression is a constant independent of h and can therefore be discarded 
 

Maximizing this negative term is equivalent to minimizing the corresponding positive term. 
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Finally Discard constants that are independent of h 
 

• the hML is one that minimizes the sum of the squared errors 

 
Why is it reasonable to choose the Normal distribution to characterize noise? 

• good approximation of many types of noise in physical systems 

• Central Limit Theorem shows that the sum of a sufficiently large number of independent, 
identically distributed random variables itself obeys a Normal distribution 

Only noise in the target value is considered, not in the attributes describing the instances 
themselves 
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MAXIMUM LIKELIHOOD HYPOTHESES FOR 
PREDICTING PROBABILITIES 

Consider the setting in which we wish to learn a nondeterministic (probabilistic) 
function f : X → {0, 1}, which has two discrete output values. 

 
We want a function approximator whose output is the probability that f(x) = 1 

In other words , learn the target function 

f’ : X → [0, 1] such that f’ (x) = P(f(x) = 1) 

 
How can we learn f' using a neural network? 

Use of brute force way would be to first collect the observed frequencies of 1's and 
0's for each possible value of x and to then train the neural network to output the 
target frequency for each x. 
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What criterion should we optimize in order to find a maximum likelihood hypothesis 
for f' in this setting? 

• First obtain an expression for P(D|h) 

• Assume the training data D is of the form D = {(x1, d1) . . . (xm, dm)}, where di is the observed 0 or 
1 value for f (xi). 

• Both xi and di as random variables, and assuming that each training example is drawn 
independently, we can write P(D|h) as 

 

Applying the product rule 

 



The probability P(di|h, xi) 
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Re-express it in a more mathematically manipulable form, as 
 

 
Equation (4) to substitute for P(di |h, xi) in Equation (5) to obtain 

 

 



We write an expression for the maximum likelihood hypothesis 
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The last term is a constant independent of h, so it can be dropped 
 

 
It easier to work with the log of the likelihood, yielding 

 

Equation (7) describes the quantity that must be maximized in order to obtain the maximum 
likelihood hypothesis in our current problem setting 
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Gradient Search to Maximize Likelihood in a Neural Net 

 
Derive a weight-training rule for neural network learning that seeks to maximize G(h, D) using 
gradient ascent 

• The gradient of G(h, D) is given by the vector of partial derivatives of G(h, D) with respect to the 
various network weights that define the hypothesis h represented by the learned network 

• In this case, the partial derivative of G(h, D) with respect to weight wjk from input k to unit j is 
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Suppose our neural network is constructed from a single layer of sigmoid units. Then, 
 
 

 
where xijk is the kth input to unit j for the ith training example, and d(x) is the derivative of the sigmoid 
squashing function. 

Finally, substituting this expression into Equation (1), we obtain a simple expression for the 
derivatives that constitute the gradient 
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Because we seek to maximize rather than minimize P(D|h), we perform gradient ascent rather than 
gradient descent search. On each iteration of the search the weight vector is adjusted in the direction 
of the gradient, using the weight update rule 

 

where η is a small positive constant that determines the step size of the i gradient ascent search 
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It is interesting to compare this weight-update rule to the weight-update rule used by the 
BACKPROPAGATION algorithm to minimize the sum of squared errors between predicted and 
observed network outputs. 

The BACKPROPAGATION update rule for output unit weights, re-expressed using our current 
notation, is 
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MINIMUM DESCRIPTION LENGTH PRINCIPLE 

• A Bayesian perspective on Occam’s razor 

• Motivated by interpreting the definition of hMAP in the light of basic concepts from information 
theory. 

 

 
which can be equivalently expressed in terms of maximizing the log2 

 

or alternatively, minimizing the negative of this quantity 
 

• This equation can be interpreted as a statement that short hypotheses are preferred, assuming a 
particular representation scheme for encoding hypotheses and data 
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Introduction to a basic result of information theory 

 
• Consider the problem of designing a code to transmit messages drawn at random 

• i is the message 

• The probability of encountering message i is pi 

• Interested in the most compact code; that is, interested in the code that minimizes the 
expected number of bits we must transmit in order to encode a message drawn at random 

• To minimize the expected code length we should assign shorter codes to messages that are 
more probable 

• Shannon and Weaver (1949) showed that the optimal code (i.e., the code that minimizes 
the expected message length) assigns - log, pi bitst to encode message i. 

• The number of bits required to encode message i using code C as the description length 

of message i with respect to C, which we denote by Lc(i). 
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Interpreting the equation 
 

 

• -log2P(h): the description length of h under the optimal encoding for the hypothesis space H 
LCH (h) = −log2P(h), where CH is the optimal code for hypothesis space H. 

• -log2P(D | h): the description length of the training data D given hypothesis h, under the 
optimal encoding fro the hypothesis space H: LCH (D|h) = −log2P(D| h) , where C D|h is the 
optimal code for describing data D assuming that both the sender and receiver know the 
hypothesis h. 

 
Rewrite Equation (1) to show that hMAP is the hypothesis h that minimizes the sum given by the 
description length of the hypothesis plus the description length of the data given the hypothesis. 

 
 

where CH and CD|h are the optimal encodings for H and for D given h 
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The Minimum Description Length (MDL) principle recommends choosing the hypothesis that 
minimizes the sum of these two description lengths of equ. 

 

Minimum Description Length principle: 
 

 
 

 

Where, codes C1 and C2 to represent the hypothesis and the data given the hypothesis 

 

The above analysis shows that if we choose C1 to be the optimal encoding of hypotheses CH, and if 
we choose C2 to be the optimal encoding CD|h, then hMDL = hMAP 
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Application to Decision Tree Learning 

 
Apply the MDL principle to the problem of learning decision trees from some training data. 

What should we choose for the representations C1 and C2 of hypotheses and data? 

• For C1: C1 might be some obvious encoding, in which the description length grows with the 
number of nodes and with the number of edges 

• For C2: Suppose that the sequence of instances (x1 . . .xm) is already known to both the transmitter 

and receiver, so that we need only transmit the classifications (f (x1) . . . f (xm)). 

Now if the training classifications (f (x1) . . .f(xm)) are identical to the predictions of the 
hypothesis, then there is no need to transmit any information about these examples. The 
description length of the classifications given the hypothesis ZERO 

If examples are misclassified by h, then for each misclassification we need to transmit a message 
that identifies which example is misclassified as well as its correct classification 

The hypothesis hMDL under the encoding C1 and C2 is just the one that minimizes the sum of these 
description lengths. 
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• MDL principle provides a way for trading off hypothesis complexity for the number of errors 
committed by the hypothesis 

• MDL provides a way to deal with the issue of overfitting the data. 

• Short imperfect hypothesis may be selected over a long perfect hypothesis. 



 

 

Computational Learning 

 

Machine Learning: Lecture 8 
 

 

 

 

 

 

 

 

 

 

 

 

Theory 

(Based on Chapter 7 of Mitchell T.., 

Machine Learning, 1997) 
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Overview 
 Are there general laws that govern learning?

 Sample Complexity: How many training examples are needed for 

a learner to converge (with high probability) to a successful 

hypothesis?

 Computational Complexity: How much computational effort is 

needed for a learner to converge (with high probability) to a 

successful hypothesis?

 Mistake Bound: How many training examples will the learner 

misclassify before converging to a successful hypothesis?

 These questions will be answered within two analytical 

frameworks:

 The Probably Approximately Correct (PAC) framework

 The Mistake Bound framework
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Overview (Cont’d) 
 Rather than answering these questions for 
individual learners, we will answer them for 
broad classes of learners. In particular we will 
consider:
 The size or complexity of the hypothesis space 

considered by the learner. 

 The accuracy to which the target concept must be 
approximated. 

 The probability that the learner will output a 
successful hypothesis. 

 The manner in which training examples are 
presented to the learner. 
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The PAC Learning Model 

 Definition: Consider a concept class C 
defined over a set of instances X of length n 
and a learner L using hypothesis space H. C is 

PAC-learnable by L using H if for all cC, 

distributions D over X,  such that 0<  < 1/2, 

and  such that 0<  <1/2, learner L will, with 

probability at least (1- ), output a hypothesis 

hH such that errorD(h)   , in time that is 

polynomial in 1/ , 1/ , n , and size(c). 
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Sample Complexity for Finite 
Hypothesis Spaces 
 Given any consistent learner, the number of examples 

sufficient to assure that any hypothesis will be probably 

(with probability (1- )) approximately (within error  ) 

correct is m= 1/ (ln|H|+ln(1/)) 

 If the learner is not consistent, m= 1/22 (ln|H|+ln(1/)) 

 Conjunctions of Boolean Literals are also PAC- 

Learnable and m= 1/ (n.ln3+ln(1/)) 

 k-term DNF expressions are not PAC learnable because 

even though they have polynomial sample complexity, 

their computational complexity is not polynomial. 

 Surprisingly, however, k-term CNF is PAC learnable. 
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Sample Complexity for Infinite 
Hypothesis Spaces I: VC-Dimension 

 The PAC Learning framework has 2 disadvantages:
 It can lead to weak bounds
 Sample Complexity bound cannot be established for 

infinite hypothesis spaces
 We introduce new ideas for dealing with these problems:

 Definition: A set of instances S is shattered by hypothesis 
space H iff for every dichotomy of S there exists some 
hypothesis in H consistent with this dichotomy.

 Definition: The Vapnik-Chervonenkis dimension, 
VC(H), of hypothesis space H defined over instance 
space X is the size of the largest finite subset of X

shattered by H. If arbitrarily large finite sets of X can b 
shattered by H, then VC(H)=
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Sample Complexity for Infinite 
Hypothesis Spaces II 

 Upper-Bound on sample complexity, using the VC- 

Dimension: m 1/ (4log2(2/)+8VC(H)log2(13/) 

 Lower Bound on sample complexity, using the VC- 

Dimension: 

Consider any concept class C such that VC(C)  2, any 

learner L, and any 0 <  < 1/8, and 0 <  < 1/100. Then 

there exists a distribution D and target concept in C 

such that if L observes fewer examples than 

max[1/ log(1/ ),(VC(C)-1)/(32)] 

then with probability at least , L outputs a hypothesis 

h having errorD(h)>  . 
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VC-Dimension for Neural Networks 
 Let G be a layered directed acyclic graph with n 

input nodes and s2 internal nodes, each having 
at most r inputs. Let C be a concept class over Rr 

of VC dimension d, corresponding to the set of 
functions that can be described by each of the s 

internal nodes. Let CG be the G-composition of 

C, corresponding to the set of functions that can 

be represented by G. Then VC(CG)2ds log(es), 

where e is the base of the natural logarithm. 

 This theorem can help us bound the VC- 

Dimension of a neural network and thus, its 

sample complexity (See, [Mitchell, p.219])! 
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The Mistake Bound Model of Learning 
 

 The Mistake Bound framework is different from 

the PAC framework as it considers learners that 

receive a sequence of training examples and that 

predict, upon receiving each example, what its 

target value is. 

 The question asked in this setting is: “How 

many mistakes will the learner make in its 

predictions before it learns the target concept?” 

 This question is significant in practical settings 

where learning must be done while the system is 

in actual use. 
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Optimal Mistake Bounds 

  Definition: Let C be an arbitrary nonempty 

concept class. The optimal mistake bound 

for C, denoted Opt(C), is the minimum over 

all possible learning algorithms A of MA(C). 
Opt(C)=minALearning_Algorithm MA(C) 

 For any concept class C, the optimal 

mistake bound is bound as follows: 

VC(C)  Opt(C)  log2(|C|) 
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A Case Study: The Weighted- 
Majority Algorithm 

ai denotes the ith prediction algorithm in the pool A of 
algorithm. wi denotes the weight associated with ai. 

 For all i initialize wi <-- 1 
 For each training example <x,c(x)> 

 Initialize q0 and q1 to 0 
 For each prediction algorithm ai 

• If ai(x)=0 then q0 <-- q0+wi 

• If ai(x)=1 then q1 <-- q1+wi 

 If q1 > q0 then predict c(x)=1 
 If q0 > q1 then predict c(x) =0 
 If q0=q1 then predict 0 or 1 at random for c(x) 
 For each prediction algorithm ai in A do 

• If ai(x)  c(x) then wi <-- wi 
11 



 

 

Relative Mistake Bound for the 
Weighted-Majority Algorithm 

 

 

 Let D be any sequence of training examples, let A 

be any set of n prediction algorithms, and let k be 

the minimum number of mistakes made by any 

algorithm in A for the training sequence D. Then 

the number of mistakes over D made by the 

Weighted-Majority algorithm using =1/2 is at 

most 2.4(k + log2n). 

 This theorem can be generalized for any 0   1 

where the bound becomes 

(k log2 1/ + log2n)/log2(2/(1+ )) 
12 



 

 

INSTANCE-BASE LEARNING 
 
• Instance-based learning methods simply store the training examples 

instead of learning explicit description of the target function. 

– Generalizing the examples is postponed until a new instance must be classified. 

– When a new instance is encountered, its relationship to the stored examples is 

examined in order to assign a target function value for the new instance. 

• Instance-based learning includes nearest neighbor, locally weighted 

regression and case-based reasoning methods. 

• Instance-based methods are sometimes referred to as lazy learning 

methods because they delay processing until a new instance must be 

classified. 

• A key advantage of lazy learning is that instead of estimating the target 

function once for the entire instance space, these methods can estimate 

it locally and differently for each new instance to be classified. 



k-Nearest Neighbor Learning 
 

 

(xir  xjr)2
 

r 1 

n 

 

 

• k-Nearest Neighbor Learning algorithm assumes all instances 

correspond to points in the n-dimensional space Rn 

• The nearest neighbors of an instance are defined in terms of Euclidean 

distance. 

• Euclidean distance between the instances xi = <xi1,…,xin> and 

xj = <xj1,…,xjn> are: 

d (xi, xj) 












• For a given query instance xq, f(xq) is calculated the function values of 

k-nearest neighbor of xq 



k-Nearest Neighbor Learning 

CS464 Introduction to Machine Learning 3 
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• Store all training examples <xi,f(xi)> 

• Calculate f(xq) for a given query instance xq using k-nearest neighbor 

• Nearest neighbor: (k=1) 

– Locate the nearest traing example xn, and estimate f(xq) as 

– f(xq)  f(xn) 

• k-Nearest neighbor: 

– Locate k nearest traing examples, and estimate f(xq) as 

– If the target function is real-valued, take mean of f-values of k 

nearest neighbors. 

f(xq) 

– If the target function is discrete-valued, take a vote among f-values 

of k nearest neighbors. 



When To Consider Nearest Neighbor 
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• Instances map to points in Rn 

• Less than 20 attributes per instance 

• Lots of training data 

• Advantages 

– Training is very fast 

– Learn complex target functions 

– Can handle noisy data 

– Does not loose any information 

• Disadvantages 

– Slow at query time 

– Easily fooled by irrelevant attributes 



Distance-Weighted kNN 
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Curse of Dimensionality 
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Locally Weighted Regression 

CS464 Introduction to Machine Learning 7 

 

 

 

 

• KNN forms local approximation to f for each query point xq 

• Why not form an explicit approximation f(x) for region surrounding xq 

 Locally Weighted Regression 

• Locally weighted regression uses nearby or distance-weighted training examples to 

form this local approximation to f. 

• We might approximate the target function in the neighborhood surrounding x, using a 

linear function, a quadratic function, a multilayer neural network. 

• The phrase "locally weighted regression" is called 

– local because the function is approximated based only on data near the query 

point, 

– weighted because the contribution of each training example is weighted by its 

distance from the query point, and 

– regression because this is the term used widely in the statistical learning 

community for the problem of approximating real-valued functions. 



Locally Weighted Regression 
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• Given a new query instance xq, the general approach in locally 

weighted regression is to construct an approximation f that fits the 

training examples in the neighborhood surrounding xq. 

• This approximation is then used to calculate the value f(xq), which is 

output as the estimated target value for the query instance. 



Locally Weighted Linear Regression 
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Kernel function K is the function of distance that is used to determine 

the weight of each training example. 
 

 

 



Radial Basis Functions 
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• One approach to function approximation that is closely related to distance-weighted 

regression and also to artificial neural networks is learning with radial basis functions. 

• The learned hypothesis is a function of the form 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



Radial Basis Function Networks 
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Each hidden unit produces an activation 

determined by a Gaussian function 

centered at some instance xu. 

 
Therefore, its activation will be close to 

zero unless the input x is near xu. 

 
The output unit produces a linear 

combination of the hidden unit 

activations. 



Case-based reasoning 
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• Instance-based methods 

– lazy 

– classification based on classifications of near (similar) instances 

– data: points in n-dim. space 

• Case-based reasoning 

– as above, but data represented in symbolic form 

• New distance metrics required 



Lazy & eager learning 
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• Lazy: generalize at query time 

– kNN, CBR 

• Eager: generalize before seeing query 

– Radial basis, ID3, … 

• Difference 

– eager must create global approximation 

– lazy can create many local approximation 

– lazy can represent more complex functions using same H (H = linear 

functions) 



 

 

Genetic Algorithms 

 

Machine Learning: Lecture 12 
 

 

 

 

 

 

 

 

 

 

 

 

(Based on Chapter 9 of Mitchell, T., 

Machine Learning, 1997) 
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Overview of Genetic Algorithms (GAs) 

 GA is a learning method motivated by 

analogy to biological evolution. 

 GAs search the hypothesis space by 

generating successor hypotheses which 

repeatedly mutate and recombine parts of 

the best currently known hypotheses. 

 In Genetic Programming (GP), entire 

computer programs are evolved to certain 

fitness criteria. 
 

 

2 



 

 

General Operation of GAs 
 Initialize Population: generate p hypotheses at random.

 Evaluate: for each p, compute fitness(p)

 While Maxh Fitness(h) < Threshold do

 Select: probabilistically select a fraction of the best p’s in P. Call 

this new generation PNew

 Crossover: probabilistically form pairs of the selected p’s and 

produce two offsprings by applying the crossover operator. Add all 

offsprings to Pnew.

 Mutate: Choose m% of PNew with uniform probability. For each,

invert one randomly selected bit in its representation. 

 Update: P <- Pnew

 Evaluate: for each p in P, compute fitness(p)

 Return the hypothesis from P that has the highest fitness.
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Representing Hypotheses 

 In GAs, hypotheses are often represented by bit 
strings so that they can be easily manipulated by 
genetic operators such as mutation and crossover. 

 Examples: 

(Outlook = Overcast v Rain) ^ (Wind = Strong) 
<=> 011 10 

IF Wind = Strong THEN PlayTennis = yes 
<=> 111 10 10 

where group 1 = 3-valued outlook, 
group 2 = 2-valued Wind 
group 3 = 2-valued PlayTennis 
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Genetic Operators 
 Crossover Techniques: 

 Single-point Crossover. 

Mask example: 11111000000 

 Two-point Crossover. 

Mask example: 00111110000 

 Uniform Crossover. 

Mask example: 10011010011 

 Mutation Techniques: 

 Point Mutation 

 Other Operators: 

 Specialization Operator 

 Generalization Operator 
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j=1 

Fitness Function and Selection 

 A simple measure for modeling the probability that a 

hypothesis will be selected is given by the fitness 

proportionate selection (or roulette wheel selection): 

Pr(hi)= Fitness(hi)/ p Fitness(hj) 

 Other methods: Tournament Selection and Rank 

Selection. 

 In classification tasks, the Fitness function typically 

has a component that scores the classification 

accuracy over a set of provided training examples. 

Other criteria can be added (e.g., complexity or 

generality of the rule) 
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Hypothesis Space Search (I) 

 GA search can move very abruptly (as compared to 
Backpropagation, for example), replacing a parent 
hypothesis by an offspring that may be radically different 
from the parent.

 The problem of Crowding: when one individual is more fit 
than others, this individual and closely related ones will 
take up a large fraction of the population.

 Solutions:
 Use tournament or rank selection instead of roulette 

selection.
 Fitness sharing
 restrict ion on the kinds of individuals allowed to 

recombine to form offsprings.
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Hypothesis Space Search (II): 

The Schema Theorem [Holland, 75] 
 

 

 Definition: A schema is any string composed of 

0s, 1s and *s where * means ‘don’t care’.

 Example: schema 0*10 represents strings 0010 

and 0110.

 The Schema Theorem: More fit schemas will 

tend to grow in influence, especially schemas 

containing a small number of defined bits (i.e., 

containing a large number of *s), and especially 

when these defined bits are near one another 

within the bit string.
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Genetic Programming: 

Representing Programs 

 Example: sin(x)+sqrt(x2+y)
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Genetic Programming: Crossover 

Operation 
 Example: 
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Models of Evolution and Learning I: 

Lamarckian Evolution [Late 19th C] 

  Proposition: Experiences of a single organism 

directly affect the genetic makeup of their 

offsprings.

 Assessment: This proposition is wrong: the 

genetic makeup of an individual is unaffected by 

the lifetime experience of one’s biological parents.

 However: Lamarckian processes can sometimes 

improve the effectiveness of computerized genetic 

algorithms.
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Models of Evolution and Learning II: 
Baldwin Effect [1896] 

 If a species is evolving in a changing environment, there 
will be evolutionary pressure to favor individuals with the 
capability to learn during their lifetime.

 Those individuals who are able to learn many traits will 
rely less strongly on their genetic code to “hard-wire” 
traits. As a result, these individuals can support a more 
diverse gene pool, relying on individual learning of the 
“missing” or “sub-optimized” traits in the genetic code. 
This more diverse gene pool can, in turn, support more 
rapid evolutionary adaptation. Thus the capability of 
learning can accelerate the rate of evolutionary adaptation 
of a population.
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Parallelizing Genetic Algorithms 

 GAs are naturally suited to parallel implementation. 

Different approaches were tried:

 Coarse Grain: subdivides the population into distinct 

groups of individuals (demes) and conducts a GA search 

in each deme. Transfer between demes occurs (though 

infrequently) by a migration process in which individuals 

from one deme are copied or transferred to other demes

 Fine Grain: One processor is assigned per individual in 

the population and recombination takes place among 

neighboring individuals.
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Machine Learning 

Chapter 10. Learning Sets of Rules 

 

Tom M. Mitchell 
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Learning Disjunctive Sets of 

Rules 

 Method 1: Learn decision tree, convert to 
rules

 Method 2: Sequential covering algorithm:

1. Learn one rule with high accuracy, any 
coverage 

2. Remove positive examples covered by this 
rule 

3. Repeat 
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Sequential Covering Algorithm 

SEQUENTIAL- 

COVERING (Target attribute; Attributes; Examples; Threshold) 

 Learned rules  {}

 Rule  LEARN-ONE- 
RULE(Target_attribute, Attributes, Examples)

 while PERFORMANCE (Rule, Examples)

> Threshold, do 

– Learned_rules  Learned_rules + Rule 

– Examples  Examples – {examples correctly classified by Rule} 

– Rule  LEARN-ONE- 
RULE (Target_attribute, Attributes, Examples) 

– Learned_rules  sort Learned_rules accord to 
PERFORMANCE over Examples 

– return Learned_rules 
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Learn-One-Rule 
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 Pos  positive Examples

 Neg  negative Examples

 while Pos, do
Learn a NewRule 

- NewRule  most general rule possible 
- NewRule  Neg 
- while NewRuleNeg, do 

Add a new literal to specialize NewRule 

1. Candidate literals  generate candidates 

2. Best_literal  argmaxLCandidate literals 

Performance(SpecializeRule(NewRule; L)) 

3. add Best_literal to NewRule preconditions 

4. NewRuleNeg  subset of NewRuleNeg 

that satisfies NewRule preconditions 

- Learned_rules  Learned_rules + NewRule 

- Pos  Pos – {members of Pos coverd by NewRule} 

 Return Learned_rules

 
Learn-One-Rule(Cont.) 
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Subtleties: Learn One Rule 

1. May use beam search 

2. Easily generalizes to multi-valued target functions 

3. Choose evaluation function to guide search: 

– Entropy (i.e., information gain) 

– Sample accuracy: 

 
where nc = correct rule predictions, n = all predictions 

 m estimate:
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Variants of Rule Learning Programs 
 

 Sequential or simultaneous covering of data?

 General  specific, or specific  general?

 Generate-and-test, or example-driven?

 Whether and how to post-prune?

 What statistical evaluation function?
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Learning First Order Rules 

Why do that? 

 Can learn sets of rules such as

Ancestor(x, y)  Parent(x; y) 

Ancestor(x; y)  Parent(x; z) ^ Ancestor(z; 

y) 

 General purpose programming language 

PROLOG : programs are sets of such rules
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First Order Rule for Classifying Web 

Pages 

[Slattery, 1997] 

course(A) 

has-word(A, instructor), 

Not has-word(A, good), 

link-from(A, B), 

has-word(B, assign), 

Not link-from(B, C) 

Train: 31/31, Test: 31/34 
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Specializing Rules in FOIL 
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Information Gain in FOIL 
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Induction as Inverted Deduction 



Induction as Inverted Deduction(Cont’) 

14 

 

 

 

 

 

 

 



Induction as Inverted Deduction(Cont’) 
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Induction is, in fact, the inverse operation of deduction, and 
cannot be conceived to exist without the corresponding 
operation, so that the question of relative importance cannot 
arise. Who thinks of asking whether addition or subtraction is 
the more important process in arithmetic? But at the same 
time much difference in difficulty may exist between a direct 
and inverse operation; : : : it must be allowed that inductive 
investigations are of a far higher degree of difficulty and 
complexity than any questions of deduction…. 

 

(Jevons 1874) 



Induction as Inverted Deduction(Cont’) 
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Induction as Inverted Deduction(Cont’) 
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Induction as Inverted Deduction(Cont’) 
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Deduction: Resolution Rule 
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Inverting Resolution 
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Inverted Resolution 

(Propositional) 
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First order resolution 
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Inverting First order resolution 
 

 

 

 

 

 

 

 

 

 

 

 

 



Cigol 

24 

 

 

 



Progol 

25 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Machine Learning 

Chapter 13. Reinforcement 

Learning 

 
 

Tom M. Mitchell 
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Control Learning 

Consider learning to choose actions, e.g., 

 Robot learning to dock on battery charger

 Learning to choose actions to optimize factory output

 Learning to play Backgammon

Note several problem characteristics: 

 Delayed reward

 Opportunity for active exploration

 Possibility that state only partially observable

 Possible need to learn multiple tasks with same 
sensors/effectors
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One Example: TD-Gammon 

Learn to play Backgammon 

Immediate reward 

 +100 if win 

 -100 if lose

 0 for all other states

Trained by playing 1.5 million games against itself 

Now approximately equal to best human player 
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Reinforcement Learning Problem 
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Markov Decision Processes 

Assume 

 finite set of states S

 set of actions A

 at each discrete time agent observes state st  S and

chooses action at  A 

 then receives immediate reward rt

 and state changes to st+1

 Markov assumption : st+1 = (st, at ) and rt = r(st, at )
– i.e., rt and st+1 depend only on current state and action 

– functions  and r may be nondeterministic 

– functions  and r not necessarily known to agent 
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Agent's Learning Task 
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Value Function 
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What to Learn 
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Q Function 
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Training Rule to Learn Q 
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Q Learning for Deterministic 

Worlds 
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Nondeterministic Case 
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Nondeterministic Case(Cont’) 
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Temporal Difference Learning 
 

 

 



18 

 

 

 

 

 

 

 

 

 
 

Learning(Cont’) 
 

Temporal Difference 
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Subtleties and Ongoing Research 
 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 


